(Microsoft Word - METODE ZA UKLANJANJE NESTACIONARNIH OMETACA KOD \212UMNIH RADARA - Slobodan Djukanovic)

Величина: px
Почињати приказ од странице:

Download "(Microsoft Word - METODE ZA UKLANJANJE NESTACIONARNIH OMETACA KOD \212UMNIH RADARA - Slobodan Djukanovic)"

Транскрипт

1 METODE ZA UKLANJANJE NESTACIONARNIH OMETAČA KOD ŠUMNIH RADARA Slobodan Đukanović, Miloš Daković, LJubiša Stanković Ključne riječi: Uklanjanje ometača, lokalna polinomijalna Fourier-ova transformacija, šumni radar, signal sa polinomijalnom fazom, proizvodna ambiguity funkcija višeg reda, kratkotrajna Fourier-ova transformacija. Sažetak: Ovaj rad se bavi uklanjanjem ometača kod šumnih radara. Četiri metode su razmatrane, dve neparametarske i dve parametarske. Neparametarske metode su zasnovane na kratkotrajnoj Fourier-ovoj transformaciji (eng. short-time Fourier transform (STFT)) i lokalnoj polinomijalnoj Fourier-ovoj transformaciji (eng. local polynomial Fourier transform (LPFT)). STFT je najjednostavnija vremenskofrekvencijska (TF) metoda. Njen nedostatak je slaba rezolucija u TF ravni, odnosno slabe performanse kad se radi sa visoko nestacionarnim signalima. LPFT rešava problem rezolucije, ali po ceni povećane računske složenosti. U parametarskim metodama, faza ometača se modelira polinomom. Nakon estimacije koeficijenata polinoma, primljeni signal se demodulira kako bi se ometač prebacio u zonu učestanosti oko DC komponente. Ometač se dalje uklanja anuliranjem niskih frekvencija demoduliranog signala. Razmatraju se dve metode za estimaciju koeficijenata polinoma faze, ambiguity funkcija višeg reda (eng. high-order ambiguity function (HAF)) i proizvodna ambiguity funkcija višeg reda (eng. product high-order ambiguity function (PHAF)). Metoda zasnovana na HAF tehnici je računski vrlo efikasna, ali u prisustvu multikomponentnih signala dolazi do problema identifikacije komponenti. Ovaj problem se može rešiti pomoću PHAF.. UVOD Šumni radari (eng. noise radars) poseduju veliki broj prednosti u odnosu na standardne radare. Prednosti uključuju jednoznačnu estimaciju ranga (eng. range estimation), visoka Doc. dr Slobodan Đukanović, Elektrotehnički fakultet Podgorica, Džordža Vašingtona b.b Podgorica. Prof. dr Miloš Daković, Elektrotehnički fakultet Podgorica, Džordža Vašingtona b.b Podgorica. Prof. dr Ljubiša Stanković, Elektrotehnički fakultet Podgorica, Džordža Vašingtona b.b Podgorica. Rad predstavlja rezultat aktivnosti na projektu Analiza nestacionarnih signala u vremensko-frekvencijskom domenu sa primjenom na radarske signale koji finansira Ministarstvo prosvete i nauke Crne Gore.

2 S. Đukanović, M. Daković, LJ. Stanković: Metode za uklanjanje nestacionarnih 9 otpornost na uticaj ambijentalnog šuma, mala verovatnoća presretanja signala, potiskivanje ometača, visoka elektromagnetska kompatibilnost. Primene šumnih radara uključuju nadzor kroz zidove (eng. through wall surveillance), detekciju i praćenje, Doppler estimaciju, polarimetriju, interferometriju []-[4]. Iako šumni radar inherentno uklanja uticaj ometača, njegove performanse mogu biti značajno degradirane ako primljeni signal sadrži vrlo jak ometač. Performanse šumnih radara se obično procenjuju u zavisnosti od odnosa peak-to-sidelobe (PSR) i jak ometač može značajno smanjiti PSR. U ovom radu dajemo pregled četiri metode za uklanjanje nestacionarnih ometača kod šumnih radara [5]-[7]. Dve metode su neparametarske i dve su parametarske. Neparametarske metode koriste vremensko-frekvencijske (TF) alate. Činjenica da signali šumnih radara zauzimaju puno širi frekvencijski opsed od frekvencijski- ili faznomodulisanih ometača opravdava upotrebu TF alata za tu svrhu. Linearne TF metode, kratkotrajna Fourier-ova transformacija (eng. short-time Fourier transform (STFT)) i lokalna polinomijalna Fourier-ova transformacija (eng. local polynomial Fourier transform (LPFT)) se koriste u [5]. Njihova implementacija je olakšana korišćenjem brze Fourier-ove transformacije (FFT). Metoda zasnovana na STFT je jednostavnija od one zasnovane na LPFT, ali njene su performanse znatno slabije u slučaju nestacionarnih ometača. S druge strane, metoda zasnovana na LPFT daje rezultate praktično nezavisne od nestacionarnosti ometača. Međutim, ova metoda zahteva veće računsku složenost usled procedure estimacije koeficijenta polinoma [8]. Parametarske metode su zasnovane na ambiguity funkciji višeg reda (eng. high-order ambiguity function (HAF)), čija je primena u predmetnu svrhu nedavno predložena u [6]. U tom radu, faza ometača se aproksimira polinomom. Dobijeni polinom kasnije služi za demodulaciju primljenog signala, kako bi se ometač koncentrisao u zoni frekvencija oko DC komponente. Primljeni signal se filtrira uklanjanjem niskih frekvencija tako dobijenog demodulisanog signala. Metoda je znatno niže računske složenosti u odnosu na one zasnovane na TF metodama. Ipak, ako je ometač višekomponentni signal, estimacija zasnovana na HAF-u je podložna uticaju kros-članova, nepoželjnih komponenti koje mogu maskirati komponente koje odgovaraju pojedinačnim komponentama signala, što dovodi do pogrešne estimacije parametara. Takođe, prisutan je i problem identifikacije komponenti u prisustvu više komponenti signala sa polinomijalnom fazom (eng. polynomial-phase signal (PPS)) koje imaju isti koeficijent najvišeg reda [9]. Takva situacija se može sresti kod multipath kanala. U cilju prevazilaženja ovog problema, metoda zasnovana na proizvodnoj ambiguity funkciji višeg reda (eng. product high-order ambiguity function (PHAF)) je predložena u [7]. Rad je organizovan u sedam sekcija. Principi šumnih radara su opisani u drugoj sekciji. Metode za uklanjanje ometača su predstavljene u trećoj i četvrtoj sekciji, dok je diskusija data u petoj sekciji. Rezultati simulacija su dati šestoj, a zaključci u sedmoj sekciji. 2. ŠUMNI RADARI 2. OSNOVE ŠUMNIH RADARA Kod šumnih radara, detekcija mete i estimacija ranga se dobijaju pomoću korelacije poslatog i primljenog signala. Poslati signal je slučajni šum, dok primljeni signal

3 20 ETF Journal of Electrical Engineering, Vol. 9, No., October 20. predstavlja oslabljenu i zakašnjenu verziju poslatog signala. Pozicija maksimuma korelacije daje estimaciju ranga mete. Pretpostavimo da je poslati signal x(t) kompleksni Gauss-ov šum nulte srednje vrednosti i varijanse σ x 2. Realni i imaginarni deo šuma su nezavisne promenljive. Pretpostavićemo da je meta tačka (eng. single point scatterer) na udaljenosti r 0 duž linije vidljivosti radara. U tom slučaju, povratni signal će biti zakašnjen za vrednost T 0 =2r 0 /c u odnosu na x(t), gde je c brzina prostiranja elektromagnetih talasa. Primljeni signal se može modelovati sa [5]: y( t) = A x( t T ) + ε ( t) () σ 0 gde je A σ reflektivnost mete i ε(t) je ambijentalni šum modelovan kao Gauss-ov proces nulte srednje vrednosti i varijanse σ ε 2. Signali x(t) i ε(t) su međusobno nekorelisani. Pretpostavićemo da je A σ =. Korelacija između poslatog i primljenog signala je data sa: T int * τ (2) 0 C( τ ) = y( t) x ( t ) dt, gde je T int vreme integracije. Pošto je T int konačna veličina, C(τ) je slučajna promenljiva čija je srednja vrednost [6]: E[ C( τ )] = T R ( τ T ), (3) int xx 0 gde je R xx (τ) autokorelaciona funkcija signala x(t). S obzirom da važi R xx (τ) R xx (0) [0], kašnjenje T 0 se može estimirati kao: T0 = max E[ C( τ )]. (4) τ U diskretnom domenu, korelacija C(τ) se može napisati na sledeći način [3,4]: N N * * C = y( n) x ( n k) = [ x( n m) + ε ( n)] x ( n k), k (5) n= 0 n= 0 gde x(n), y(n) i ε(n) predstavljaju diskretne verzije signala x(t), y(t) i ε(t), respektivno, dok celobrojni indeksi m i k odgovaraju T 0 i τ, respektivno. N je broj odbiraka i odgovara vremenu integracije T int. Maksimum korelacije će se javiti za k=m. Performanse korelacionog prijemnika šumnog radara se ocenjuju koristeći odnos PSR koji se definiše na sledeći način [3]:

4 S. Đukanović, M. Daković, LJ. Stanković: Metode za uklanjanje nestacionarnih 2 E 2 [ Ck= m ] PSR =. (6) Var[ C ] Zamenom (5) u (6) dobijamo [3], [4]: N PSR =, (7) - + SNR k m gde je SNR=σ 2 x /σ 2 ε odnos signal-šum (eng. signal-to-noise ratio (SNR)), pri čemu se termin šum odnosi na ambijentalni šum. 2.2 UTICAJ OMETAČA Posmatrajmo primljeni signal u osnovnom opsegu y(n), koji pored signala x(n) i ε(n) sadrži i ometač I(n), tj.: y( n) = x( n) + I ( n) + ε ( n), (8) pri čemu su sve tri komponente međusobno nekorelisane. U radu ćemo razmatrati model ometača sa konstantnom amplitudom, tj.: j ( n) I( n) = Ae ϕ, (9) gde su A i φ(n) amplituda i faza ometača, respektivno. Odnos signal-ometač (eng. signal-tointerference ratio (SIR)) se definiše kao SIR=σ x 2 /A 2. PSR primljenog signala je sad [6]: N PSR =, (0) SNR + SIR što u slučaju vrlo jakih ometača, tj. kad je SIR<<, može uzeti vrlo male vrednosti. U tom slučaju se primljeni signal mora filtrirati pre određivanja korelacije. 3. NEPARAMETARSKE METODE 3. KRATKOTRAJNA FOURIER-ova TRANSFORMACIJA STFT signala x(n), u oznaci STFT x (n,k), se dobija kao Fourier-ova transformacija proizvoda signala x(n) i prozorske funkcije w(n) [], tj.:

5 22 ETF Journal of Electrical Engineering, Vol. 9, No., October 20. N / 2 2π j mk N STFT x ( n, k) = x( n + m) w( m) e = DFT[ x( n + m) w( m)], () m= N / 2 gde N predstavlja broj frekvencijskih odbiraka korišćenih pri računanju DFT. Prozorska funkcija je obično realna i zadovoljava w(0)=. Iz () se jednostavno može dobiti inverzna relacija: N x( n) = STFT x ( n, k). (2) N k = 0 Rečima, signal x(n) se može dobiti iz svoje STFT sumiranjem vrednosti STFT po svim frekvencijama za dato n. 3.2 LOKALNA POLINOMIJALNA FOURIER-ova TRANSFORMACIJA LPFT predstavlja generalizaciju STFT. Diskretni oblik LPFT M-tog reda signala x(n) se definiše na sledeći način [2]: M x M i+ m N / 2 j 2π ωi j mk i= ( i+ )! N LPFT ( n, k) = x( n + m) w( m) e e m= N / 2 M i+ m j ωi i= ( i+ )! = DFT[ x( n + m) w( m) e ], (3) gde w(m) i N imaju isto značenje kao u (), dok je ω i i-ti parametar transformacije. Relacija (3) ukazuje da se LPFT signala dobija slično STFT, tj. kao pomeranjem prozora w(m) duž modulisanog signala: x( n + m) e M i+ m j ωi i= ( i+ )! i traženjem DFT proizvoda modulisanog signala i prozora na datoj poziciji. Kao i STFT, LPFT je linearna transformacija i originalni signal se, u trenutku n, može rekonstruisati na sledeći način [8]: N M x( n) = LPFT x ( n, k). (4) N k= 0

6 S. Đukanović, M. Daković, LJ. Stanković: Metode za uklanjanje nestacionarnih 23 Parametri LPFT ω i, i=,2,...,m, se određuju tako da predmetni signal (u našem slučaju ometač) bude optimalno koncentrisan u TF ravni. U tom smislu, u [8] je razvijen algoritam za estimaciju parametara koji održava kompleksnost pretrage na razumnom nivou. Štaviše, pokazano je da LPFT drugog reda daje rezultate praktično nezavisne od nestacionarnosti ometača, čime se eliminiše potreba za traženjem koeficijenata višeg reda. 3.3 VREMENSKI PROMJENLJIVO FILTRIRANJE I BINARNA MASKA Signali šumnih radara zauzimaju znatno širi frekvencijski opsed od frekvencijski- ili fazno-modulisanih smetnji. Uklanjanje ometača se stoga može izvršiti u TF ravni primenom binarne maske koja ima vrednost nula u svim TF tačkama gde se ometač ne može zanemariti. Teorijski, ometač postoji u svakoj TF tački, ali ima značajnu vrednost samo u uskom opsegu oko trenutne frekvencije ometača. Binarna maska se, dakle, može definisati sa: 0, ometač postoji u ( n, k) B( n, k) = (5), inače. Filtrirani primljeni signal se dobija koristeći sledeće relacije: N f x ( n) = STFT x ( n, k) B( n, k) (6) N k = 0 N f M x ( n) = LPFT x ( n, k) B( n, k). (7) N k = 0 Pored ometača, binarna maska uklanja i deo korisnog signala. Zato je od velike važnosti da oblast koja se anulira binarnom maskom bude što manja. Kod STFT, ovo je vrlo teško postići jer oblast koja se anulira zavisi od nestacionarnosti ometača [8]. Izborom prozorske funkcije se donekle može uticati na veličinu oblasti koja se uklanja. Sa druge strane, kod LPFT se pravilnim odabirom parametara može postići da se trenutna širina opsega nestacionarnog ometača unutar posmatranog prozora svede na širinu opsega stacionarnog ometača.

7 24 ETF Journal of Electrical Engineering, Vol. 9, No., October 20. Slika. Binarna maska dobijena kod a) STFT, b) LPFT prvog reda, i c) LPFT drugog reda. Nulte vrednosti maske su prikazane crnom bojom. n-vreme, k-frekvencija. Na slici. su prikazane binarne maske dobijene u slučaju eliminisanja sinusno-fm ometača, pri čemu su razmatrane tri transformacije, STFT, LPFT prvog i LPFT drugog reda. Oblast koja se eliminiše je prikazana crnom bojom. Kao što je očekivano, kod STFT je ta oblast najveća. Sa druge strane, kod LPFT drugog reda, ta oblast je najmanja i praktično ima istu širinu u svakom vremenskom trenutku. Postupak dobijanja binarne maske je detaljno opisan u [5]. U ovom radu ćemo koristiti tip 2 binarne maske, kod koje se, u datom vremenskom trenutku, ometač eliminiše anuliranjem frekvencijskih komponenti koje sadrže ometač počev od frekvencije maksimuma spektra. Frekvencijske komponente se anuliraju sve dok ne dođemo od praga određenog statističkim karakteristikama primljenog signala bez šuma, koje se dobijaju iz tački STFT-e primljenog signala gde se uticaj ometača može zanemariti. 4. PARAMETARSKE METODE 4. AMBIGUITY FUNKCIJA VIŠEG REDA U parametarskoj analizi nestacionarnih signala, najčešće korišćeni model je PPS model. Po Weierstrass-ovoj teoremi, svaka kontinualna funkcija se na datom intervalu može modelovati polinomom [0]. Mi ćemo koristiti ovaj pristup za modelovanje faze signala. Posebno popularan metod za estimaciju PPS parametara je zasnovan na HAF [3,4]. Da bi definisali HAF, prvo ćemo definisati multilag trenutni moment višeg reda (eng. multilag high-order instantaneous moment (ml-him)) signala x(n), n=0,,..., N-, kao: x ( n) = x( n) * 2 τ = + τ τ x ( n; ) x ( n ) x ( n - ) * 3 τ 2 = 2 + τ 2 τ 2 τ 2 τ x ( n; ) x ( n ; ) x ( n ; ) * P τ P = P- + τ P τ P 2 P τ P τ P 2 x ( n; ) x ( n ; ) x ( n ; ), (8)

8 S. Đukanović, M. Daković, LJ. Stanković: Metode za uklanjanje nestacionarnih 25 gde su τ i =[τ, τ 2,..., τ i ], i=,2,..., P-, skupovi korišćenih vremenskih pomeraja (eng. lags). Multilag HAF (ml-haf) se definiše na sledeći način: P N 2 τ k k= j2π fn X ( f ; τ ) = x ( n; τ ) e. (9) P P p P n= 0 U originalnoj definiciji HAF-a [3,4], svi vremenski pomeraji τ i su isti. U slučaju kad je x(n) PPS P-tog reda, tj.: 2 ( ) 0 ( ) P m j a m m n x n Ae π = =, (20) gde je A amplituda signala, α m koeficijenti polinoma i korak odabiranja signala, ml-him P-tog reda tog signala je kompleksna sinusoida čija je frekvencija [9]: P- P P f = 2 P! a τ. (2) P k k = Korišćenjem ove osobine, koeficijent α P se može estimirati korišćenjem tehnika za maksimizaciju periodograma [5,6]. Dobijena estimacija koeficijenta α P, u oznaci α P e, se može iskoristiti da se signal x(n) demoduliše množenjem sa exp(-j2πα P e (n ) P ), kako bi se red faze smanjio za jedan. Procedura se ponavlja dok se ne estimiraju svi koeficijenti [4]. Kada je x(n) multikomponentni PPS u zapisu: K 2 m j a 0 k, m ( n ) m = k (22) k= x( n) A e π =, gde su α k,m koeficijenti polinoma k-te komponente, ml-him P-tog reda će sadržati K sinusoida, poznatih kao auto-članovi. Frekvencija svakog auto-člana je proporcionalna koeficijentu najvišeg reda faze odgovarajuće PPS komponente, kao što je dato sa (2). Pošto je ml-him nelinearna transformacija, ona će, pored auto-članova, sadržati i krosčlanove. Kada su koeficijenti najvišeg reda nekih od komponenata isti, odgovarajući krosčlanovi će biti kompleksne sinusoide [9]. Neki od pikova u ml-haf-u će tad odgovarati kros-članovima, što može dovesti do nepouzdane estimacije frekvencije auto-članova. 4.2 PROIZVODNA AMBIGUITY FUNKCIJA VIŠEG REDA Kros-članovi prisutni kod HAF-a se značajno mogu potisnuti koristeći PHAF [9]. Kod PHAF-a se koristi Q skupova vremenskih pomeraja:

9 26 ETF Journal of Electrical Engineering, Vol. 9, No., October 20. Q () (2) ( Q) P = τ P τ P τ P T [ τ, τ,..., τ ], (23) gde je τ (q) i=[τ (q),τ (q) 2,...,τ (q) P-], q=,2,..., Q. PHAF se definiše kao proizvod Q ml-hafova, tj.: Q Q Q ( q) ( q) P P = P β P q= X ( f ; T ) X ( f ; τ ), (24) gde je β koeficijent skaliranja frekvencije dat sa: β ( q) Q ( q) τ k. () k = τ k = (25) Slika 2. Tri ml-haf-a (gornja tri crteža), dobijeni korišćenjem različitih skupova pomeraja, i njihov proizvod (dno). Spektri su normalizovani po amplitudi i frekvenciji.

10 S. Đukanović, M. Daković, LJ. Stanković: Metode za uklanjanje nestacionarnih 27 Skaliranjem po frekvenciji se postiže da se kod svih ml-haf-ova auto-član pojavljuje na () () () istoj frekvenciji i ta frekvencija je proporcionalna proizvodu τ τ 2 τ P. Sa druge strane, frekvencije kros-članova se nakon skaliranja ne nalaze na istim pozicijama [9]. Proizvod Q ml-haf-ova stoga naglašava auto-članove, dok potiskuje kros-članove. Ova situacija je prikazana na slici 2, gde imamo 3 ml-haf-a i njihov proizvod. Posmatrani signal je zbir dva PPS-a trećeg reda sa amplitudom. Čak i u slučaju kad nema šuma, krosčlanovi mogu u potpunosti prekriti auto-članove (gornje tri slike). Slika na dnu pokazuje koliko su auto-članovi proizvoda naglašeni u odnosu na kros-članove. Optimalni pomeraji za ml-haf P-tog reda su međusobno jednaki i iznose: 4.3 UKLANJANJE OMETAČA KORISTEĆI HAF I PHAF N τ opt =. (26) 2P Prema Weierstrass-ovoj teoremi, faza signala φ(n) se može aproksimirati polinomom na datom vremenskom intervalu. U ovom radu ćemo vršiti aproksimaciju faze polinomom trećeg stepena. Dobijeni polinom služi za demodulaciju primljenog signala, kako bi ometač koncentrisali oko DC komponente. Za slučaj idealne aproksimacije, u demodulisanom signalu čitav ometač se nalazi u okviru DC komponente. Ometač se dalje potiskuje anuliranjem niskih frekvencija koje sadrže ometač. Algoritam uklanjanja ometača je dat u nastavku [6,7]. Korak : Estimirati koeficijente α, α 2 i α 3 polinoma koji aproksimira fazu φ(n) koristeći HAF/PHAF i proceduru estimacije opisanu ispod (2). Označimo dobijene estimacije se α e, α 2 e i α 3 e. Korak 2: Formirati estimaciju faze θ(n)=α e (n )+α e 2 (n ) 2 +α e 3 (n ) 3 i demodulisati primljeni signal u skladu sa: j2 πθ ( n) y ( n) = y( n) e. (27) θ Korak 3: Odrediti DFT signala y θ (n), tj. Y θ (k)=dft[y θ (n)]. Ukoliko demodulisani ometač zauzima najviše K niskih frekvencija u Y θ (k), ukloniti ga anuliranjem tih frekvencija, što rezultuje u filtriranom spektru Y f θ(k). Signal bez ometača se dobija kao: f k j2 ( n) θ y ( n) = IDFT[ Y ( k)] e πθ, (28) gde IDFT[] predstavlja operator inverzne DFT. Sa druge strane, ukoliko demodulisani ometač zauzima više od K niskih frekvencija u Y θ (k), podeliti razmatrani interval na dve polovine i ponoviti korake -3 na obe polovine

11 28 ETF Journal of Electrical Engineering, Vol. 9, No., October 20. pojedinačno. Ukoliko je dužina jedne polovine manja od najmanje razmatrane dužine, ne deliti interval već anulirati sve frekvencije koje sadrže ometač i rekonstruisati signal bez ometača na osnovu (28). Naglašavamo da se opisani algoritam primenjuje i kod HAF i kod PHAF uklanjanja ometača. U prvom koraku algoritma, trenutna frekvencija (eng. instantaneous frequency (IF)) se aproksimira parabolom na čitavom intervalu od N odbiraka. Ukoliko je aproksimacija dovoljno dobra, ometač se uklanja na opisan način. U suprotnom, signal se deli na dve polovine i IF ometača se estimira na oba podintervala pojedinačno, prvo levom a posle desnom. Smanjenjem širine intervala smanjuje se i IF varijacija. Ukoliko je IF estimacija dobijena za levu polovinu (prvih N/2 odbiraka) dovoljno dobra, filtriramo levu polovinu. Ukoliko aproksimacija nije dobra, delimo levu polovinu na njenu levu i desnu polovinu. Parametar K u algoritmu predstavlja broj niskofrekvencijskih komponenti, počev od DC komponente, koje koristimo u kriterijumu aproksimacije IF ometača polinomom. Naime, ako je aproksimacija idealna, sav ometač će biti koncentrisan u DC komponenti signala y θ (n) i tada je potrebno eliminisati samo jednu (K=), DC komponentu tog signala radi uklanjanja ometača. Međutim, u realnosti, aproksimacija ne može biti idealna iz nekoliko razloga. Prvo, tačnost estimiranja koeficijenata je ograničena Cramér-Rao donjom granicom. Drugo, estimacija koeficijenata višeg reda utiče na estimaciju koeficijenata nižeg reda (tzv. propagacija greške). Treće, nepolinomijalna IF se ne može idealno aproksimirati polinomom. Stoga zaključujemo da će, nakon demodulacije, ometač biti distribuiran na više frekvencija oko DC komponente signala y θ (n). Eksperimentalnim putem smo utvrdili da je K=3 dobar kompromis, odnosno smatraćemo da je aproksimacija IF ometača parabolom dovoljno dobra ako maksimalno tri frekvencije (DC i po jedna sa strane) signala y θ (n) sadrže ometač, a u drugim se može zanemariti. Predloženi algoritam se jednostavno može proširiti i na slučaj multikomponentnih signala, tj. signala oblika: M j i ( n) = Ai e ϕ (29) i= I( n), gde A i i φ i (n) predstavljaju amplitudu i fazu i-te komponente, respektivno, i M predstavlja broj komponenti. Pretpostavljajući da je broj komponenti M poznat [9,7], komponente ometača se mogu uklanjati jedna za drugom, počev od najjače. Procedura je data u nastavku. Korak : Postaviti p=. Korak 2: Ukoliko je p=m, ići na korak 4. U suprotnom, estimirati koeficijente faze α, α 2 i α 3 najjače komponente i formirati estimaciju faze θ(n) kao u prethodnom algoritmu, tj. θ(n)=α e (n )+α 2 e (n ) 2 +α 3 e (n ) 3. Korak 3: Demodulisati primljeni signal i ukloniti najjaču komponentu ometača anuliranjem najviše K niskih frekvencija demodulisanog signala. Rekonstruisati signal u skladu sa (28). Povećati p za i ići na korak 2.

12 S. Đukanović, M. Daković, LJ. Stanković: Metode za uklanjanje nestacionarnih 29 Korak 4: Estimirati θ(n) poslednje komponente i demodulisati primljeni signal koristeći dobijenu estimaciju. Ukoliko demodulisana komponenta ometača zauzima najviše K niskih frekvencija, ukloniti je anuliranjem tih frekvencija i rekonstruisati signal u skladu sa (28). U suprotnom, izvršiti korake -3 za levu i desnu polovinu primljenog signala. Ukoliko je dužina jedne polovine manja od najmanje razmatrane dužine, ne deliti interval već anulirati sve frekvencije koje sadrže ometač i rekonstruisati signal bez ometača na osnovu (28). 5. DISKUSIJA Parametarske metode su okarakterisane znatno manjom kompleksnošću u odnosu na neparametarske. Posmatrajući algoritam za uklanjanje ometača opisan u prethodnoj sekciji, kao i složenost HAF-a i PHAF-a, vidimo da je ukupna složenost parametarskih metoda O(Nlog 2 N), gde O() predstavlja veliko-o zapis. Sa druge strane, složenost metoda zasnovanih na STFT i LPFT je O(N 2 log 2 N) [8,8]. Ipak, složenost metode zasnovane na LPFT je uvek veća od složenosti metode zasnovane na STFT usled procedure za estimaciju parametara. Slika 3. STFT primljenog signala koji sadrži sinusoidalno-fm ometač propušten kroz multipath kanal. Propuštanjem ometača kroz multipath kanal se dobija multikomponentni ometač. Ukoliko se vremena dolaska multipath komponentni ne razlikuju puno, IF trajektorije komponenti će biti međusobno bliske u TF ravni. Jedna ovakva situacija je prikazana na slici 3, gde primljeni signal sadrži sinusoidalno-fm ometač i verziju tog ometača zakašnjenu za N/5. Kada se IF trajektorije seku u TF ravni ili su vrlo bliske, LPFT metod nije u stanju da optimizuje trenutnu širinu opsega komponenti, što rezultuje u većoj TF oblasti koja se uklanja [8] i većem delu korisnog signala koji se eliminiše. Performanse metoda zasnovanih na HAF i PHAF ne zavise od preseka komponenti u TF ravni. 6. SIMULACIJE Posmatrajmo šumni radar čiji je propusni opseg B=02.4 MHz, dužina impulsa T int =20 µs. U osnovnom opsegu, primljeni signal je odabran Nyquist-ovom frekvencijom tako da je

13 30 ETF Journal of Electrical Engineering, Vol. 9, No., October 20. korak odabiranja =/B. Jedan impuls tako sadrži N=2048 odbiraka. Pretpostavićemo da primljeni signal sadrži šum sa SNR=/0 (ili -0 db). Slika 4. Trenutne frekvencije razmatranih tipova ometača. Performanse metoda su evaluirane u odnosu na nekoliko tipova ometača. Trenutne frekvencije razmatranih ometača su date na slici 4. Gornja dva tipa su PPS ometači (drugi i treći PPS red), dok su donja dva ometača eksponencijalno- i sinusno-fm modulisani signali. U računanju STFT i LPFT, korišćen je Hanning-ov prozor sa 28 odbiraka. Pri računanju HAF-a, korišćeni su vremenski pomeraji u skladu sa (26). PHAF je dobijen kao proizvod 5 HAF-ova. Za računanje PHAF-a trećeg reda korišćeni su pomeraji τ () 2=(34,34), τ (2) 2=(309,373), τ (3) 2=(298,384), τ (4) 2=(277,405) i τ (5) 2=(23,469), dok su za računanje PHAF-a drugog reda korišćeni τ () =52, τ (2) =544, τ (3) =555, τ (4) =576 i τ (5) =640. PSR vrednosti u primerima su dobijene nakon 500 simulacija i date su u tabeli. Tabela. Numeričke PSR vrednosti dobijene pri uklanjanju ometača korišćenjem STFT, LPFT, HAF i PHAF metoda. STFT LPFT HAF PHAF Tip Tip Tip Tip Tip + Tip Tip 2 + Tip 2 mult Primer. U ovom primeru razmatramo monokomponentne ometače čije su frekvencije date na slici 4. Za svaki ometač važi SIR=/00 (ili -20 db). Sa ovom vrednošću SIR, analitičke vrednosti PSR za primljeni signal bez ometača i sa ometačem su 86.8 i 8.45,

14 S. Đukanović, M. Daković, LJ. Stanković: Metode za uklanjanje nestacionarnih 3 respektivno. Numeričke PSR vrednosti su prikazane u tabeli. PSR rezultati dobijeni za HAF i PHAF su za nijansu bolji od onih dobijenih za STFT i LPFT. Primer 2. Ovde razmatramo dva multikomponentna ometača. Prvi je dvokomponentni ometač čije su komponente tipa i 2 sa slike 4, okarakterisane sa SIR=-9 db i -20 db, respektivno. Drugi ometač je dvokomponentni signal dobijen propuštanjem ometača tipa 2 kroz multipath kanal. Direktna i zakašnjena verzija primljenog ometača su okarakterisane sa SIR=-9 db i -20 db, respektivno, dok je kašnjenje N/7. Dobijene PSR vrednosti za ova dva ometača su data u poslednja dva reda tabele. Uočimo da se LPFT metod ponaša približno jednako za svaki ometač. Za drugi multikomponentni ometač performanse su mu za nijansu slabije, što je posledica činjenice da su komponente bliske u TF ravni, pa je optimizacija širine pojedinih komponenti onemogućena [8]. Primer 3. U ovom primeru razmatramo ometač koji sadrži dve komponente koje su PPS signali trećeg reda. Prva komponenta je tipa 2 sa slike 4, dok druga ima različite sve polinomijalne koeficijente. PSR je izračunat u odnosu na SIR prve komponente, pri čemu je druga komponenta za db slabija. Dobijene PSR krive su prikazane na slici 5, pri čemu se SIR menja od -2 db do -22 db, sa korakom od db. U odnosu na HAF metod, PHAF daje znatno bolje rezultate za vrednost SIR između -6 db i -9 db. Između -7 db i -4 db ta je razlika vrlo velika, što je posledica pogrešne estimacije kod HAF-a usled uticaja šuma i više komponenti. Pad u performansama PHAF metode oko -8 db je usled nelinearnosti PHAF-a. STFT i LPFT metode su linearne i stoga nemaju problem kros-članova. Ipak, iznad 8 db, PHAF daje bolje rezultate. Slika 5. Poređenje tehnika za uklanjanje ometača u slučaju dvokomponentnog ometača. SIR predstavlja SIR jače komponente. SIR druge komponente je za db manji. 7. ZAKLJUČAK U radu smo razmatrali uklanjanje ometača kod šumnih radara. Predložene metode se dele na neparametarske i parametarske. Neparametarske su zasnovane na TF analizi, konkretnije na primeni linearnih TF metoda STFT i LPFT. Iako je najjednostavnija, STFT metoda ima slabe performanse pri radu sa visoko nestacionarnim signalima. LPFT, sa druge strane, daje

15 32 ETF Journal of Electrical Engineering, Vol. 9, No., October 20. dobre rezultate pri radu sa ovakvim signalima, ali po ceni povećane računske složenosti. Kod parametarskih metoda, faza ometača se modelira polinomom. Za aproksimaciju koeficijenata modelirajućeg polinoma koristimo HAF i PHAF. Dobijeni polinom služi za demodulaciju primljenog signala, kako bi ometač koncentrisali u zoni frekvencija oko DC komponente i eliminisali ga anuliranjem tih frekvencija. Metoda zasnovana na HAF je računski vrlo efikasna, ali u prisustvu multikomponentnih signala dolazi do problema identifikacije komponenti. Ovaj problem se rešava koristeći PHAF. LITERATURA [] R. M. Narayanan, Y. Xu, P. D. Hoffmeyer, and J. O. Curtis, Design, performance, and applications of a coherent ultra-wideband random noise radar, Optical engineering, vol. 37, no. 6, pp , June 998. [2] M. Dawood and R. M. Narayanan, Receiver operating characteristics for the coherent UWB random noise radar, IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 2, pp , April 200. [3] S. R. Axelsson, Noise radar for range/doppler processing and digital beamforming using low-bit ADC, IEEE Transactions on Geoscience and Remote Sensing, vol. 4, no. 2, pp , December [4] S. R. Axelsson, Noise radar using random phase and frequency modulation, IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no., pp , November [5] M. Daković, T. Thayaparan, S. Djukanović, and Lj. Stanković, Time-frequency-based nonstationary interference suppression for noise radar systems, IET Radar, Sonar & Navigation, vol. 2, no. 4, pp , August [6] S. Djukanović, M. Daković, T. Thayaparan, and Lj. Stanković, Method for non-stationary jammer suppression in noise radar systems, IET Signal Processing, vol. 4, no. 3, pp , June 200. [7] S. Djukanović and V. Popović, A parametric method for multicomponent interference suppression in noise radars, submitted to IEEE Transactions on Aerospace and Electronic Systems. [8] Lj. Stanković and S. Djukanović, Order adaptive local polynomial FT based interference rejection in spread spectrum communication systems, IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 6, pp , December [9] S. Barbarossa, A. Scaglione, and G. B. Giannakis, Product high-order ambiguity function for multicomponent polynomial phase signal modeling, IEEE Transactions on Signal Processing, vol. 46, no. 3, pp , March 998. [0] A. Papoulis and U. S. Pillai, Probability, random variables, and stochastic processes. McGraw Hill Higher Education; 4th edition, [] F. Hlawatsch and B.-B. G. Faye, Linear and quadratic time-frequency signal representations, IEEE Signal Processing Magazine, vol. 9, no. 2, pp. 2 67, April 992. [2] V. Katkovnik, A new form of the Fourier transform for time-varying frequency estimation, Signal Processing, vol. 47, no. 2, pp , November 995. [3] S. Peleg and B. Porat, Estimation and classification of polynomial phase signals, IEEE Transactions on Information Theory, vol. 37, no. 2, pp , March 99. [4] S. Peleg and B. Friedlander, The discrete polynomial-phase transform, IEEE Transactions on Signal Processing, vol. 43, no. 8, pp , August 995.

16 S. Đukanović, M. Daković, LJ. Stanković: Metode za uklanjanje nestacionarnih 33 [5] Y. V. Zakharov, V. M. Baronkin, and T. C. Tozer, DFT-based frequency estimators with narrow acquisition range, IEE Proceedings Communications, vol. 48, no., pp. 7, February 200. [6] E. Aboutanios and B. Mulgrew, Iterative frequency estimation by interpolation on Fourier coefficients, IEEE Transactions on Signal Processing, vol. 53, no. 4, pp , April [7] S. Peleg and B. Friedlander, Multicomponent signal analysis using the polynomial-phase transform, IEEE Transactions on Aerospace and Electronic Systems, vol. 32, no., pp , January 996. [8] X. Ouyang and M. G. Amin, Short-time Fourier transform receiver for nonstationary interference excision in direct sequence spread spectrum communications, IEEE Transactions on Signal Processing, vol. 49, no. 4, pp , April 200.

Техничко решење: Софтвер за симулацију стохастичког ортогоналног мерила сигнала, његовог интеграла и диференцијала Руководилац пројекта: Владимир Вуји

Техничко решење: Софтвер за симулацију стохастичког ортогоналног мерила сигнала, његовог интеграла и диференцијала Руководилац пројекта: Владимир Вуји Техничко решење: Софтвер за симулацију стохастичког ортогоналног мерила сигнала, његовог интеграла и диференцијала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Велибор

Више

Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аут

Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аут Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Иван Жупунски, Небојша Пјевалица, Марјан Урекар,

Више

Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић

Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Драган Пејић, Бојан Вујичић, Небојша Пјевалица,

Више

ФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА

ФАКУЛТЕТ  ОРГАНИЗАЦИОНИХ  НАУКА Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:

Више

1

1 Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N

Више

Microsoft Word - Journal5_jezgra

Microsoft Word - Journal5_jezgra HARDVERSKA REALIZACIJA DISTRIBUCIJA BAZIRANIH NA KORIŠĆENJU AMBIGUITY DOMENA Irena Orović, Branka Jokanović, Srdjan Stanković Ključne riječi : vremensko-frekvencijsko predstavljanje signala, ambiguity

Више

TEORIJA SIGNALA I INFORMACIJA

TEORIJA SIGNALA I INFORMACIJA Multiple Input/Multiple Output sistemi MIMO sistemi Ulazi (pobude) Izlazi (odzivi) u 1 u 2 y 1 y 2 u k y r Obrada=Matematički model Načini realizacije: fizički sistemi (hardware) i algoritmi (software)

Више

PowerPoint Presentation

PowerPoint Presentation Колоквијум # задатак подељен на 4 питања: теоријска практична пишу се програми, коначно решење се записује на папиру, кодови се архивирају преко сајта Инжењерски оптимизациони алгоритми /3 Проблем: NLP:

Више

STABILNOST SISTEMA

STABILNOST SISTEMA STABILNOST SISTEMA Najvaznija osobina sistema automatskog upravljanja je stabilnost. Generalni zahtev koji se postavlja pred projektanta jeste da projektovani i realizovani sistem automatskog upravljanja

Више

Microsoft PowerPoint - vezbe 4. Merenja u telekomunikacionim mrežama

Microsoft PowerPoint - vezbe 4. Merenja u telekomunikacionim mrežama Merenja u telekomunikacionim mrežama Merenja telefonskog saobraćaja Primer 1 - TCBH Na osnovu najviših vrednosti intenziteta saobraćaja datih za 20 mernih dana (tabela), pomoću metode TCBH, pronaći čas

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

Mere slicnosti

Mere slicnosti Nenad Mitić Matematički fakultet nenad@matf.bg.ac.rs Kako odrediti sličnost/različitost, obrazaca, atributa, dogadjaja... Podaci različitog tipa i strukture Zavisnost od tipa, raspodele, dimenzionalnosti

Више

My_ST_FTNIspiti_Free

My_ST_FTNIspiti_Free ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити

Више

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. 1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako

Више

Slide 1

Slide 1 Катедра за управљање системима ТЕОРИЈА СИСТЕМА Предавањe 2: Основни појмови - систем, модел система, улаз и излаз UNIVERSITY OF BELGRADE FACULTY OF ORGANIZATIONAL SCIENCES План предавања 2018/2019. 1.

Више

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3 Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b

Више

P1.1 Analiza efikasnosti algoritama 1

P1.1 Analiza efikasnosti algoritama 1 Analiza efikasnosti algoritama I Asimptotske notacije Master metoda (teorema) 1 Asimptotske notacije (1/2) Služe za opis vremena izvršenja algoritma T(n) gde je n N veličina ulaznih podataka npr. br. elemenata

Више

Veeeeeliki brojevi

Veeeeeliki brojevi Matematička gimnazija Nedelja informatike 3 12. decembar 2016. Uvod Postoji 10 tipova ljudi na svetu, oni koji razumeju binarni sistem, oni koji ne razumeju binarni sistem i oni koji nisu očekivali šalu

Више

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6 УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ Мр БОШКА БОЖИЛОВИЋА I ПОДАЦИ О КОМИСИЈИ 1. Датум и орган који је именовао комисију Решење Декана Факултета

Више

Microsoft Word - pitalice.doc

Microsoft Word - pitalice.doc NAPOMENA!!! Ako su ponuđeni odgovori na neke od pitalica, molim sve da to ne uzimaju zdravo za gotovo, nego da provere. Sve duplikate pitalica ignorišite! :) 3. Diskretizacija signala u vremenu. Teorema

Више

Microsoft Word - CAD sistemi

Microsoft Word - CAD sistemi U opštem slučaju, se mogu podeliti na 2D i 3D. 2D Prvo pojavljivanje 2D CAD sistema se dogodilo pre više od 30 godina. Do tada su inženjeri koristili table za crtanje (kulman), a zajednički jezik komuniciranja

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe 6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju

Више

Microsoft Word - AIDA2kolokvijumRsmerResenja.doc

Microsoft Word - AIDA2kolokvijumRsmerResenja.doc Konstrukcija i analiza algoritama 2 (prvi kolokvijum, smer R) 1. a) Konstruisati AVL stablo od brojeva 100, 132, 134, 170, 180, 112, 188, 184, 181, 165 (2 poena) b) Konkatenacija je operacija nad dva skupa

Више

LAB PRAKTIKUM OR1 _ETR_

LAB PRAKTIKUM OR1 _ETR_ UNIVERZITET CRNE GORE ELEKTROTEHNIČKI FAKULTET STUDIJSKI PROGRAM: ELEKTRONIKA, TELEKOMUNIKACIJE I RAČUNARI PREDMET: OSNOVE RAČUNARSTVA 1 FOND ČASOVA: 2+1+1 LABORATORIJSKA VJEŽBA BROJ 1 NAZIV: REALIZACIJA

Више

Slide 1

Slide 1 Катедра за управљање системима ТЕОРИЈА СИСТЕМА Предавањe 1: Увод и историјски развој теорије система UNIVERSITY OF BELGRADE FACULTY OF ORGANIZATIONAL SCIENCES Катедра за управљање системима Наставници:

Више

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o Univerzitet u Beogradu Elektrotehnički akultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o namotaju statora sinhronog motora sa stalnim magnetima

Више

Postojanost boja

Postojanost boja Korištenje distribucije osvjetljenja za ostvaranje brzih i točnih metode za postojanost boja Nikola Banić 26. rujna 2014. Sadržaj Postojanost boja Ubrzavanje lokalnog podešavanja boja Distribucija najčešćih

Више

ТЕОРИЈА УЗОРАКА 2

ТЕОРИЈА УЗОРАКА 2 ТЕОРИЈА УЗОРАКА 2 12. 04. 13. ВЕЖБАЊА Написати функције за бирање елемената популације обима N у узорак обима n, код простог случајног узорка, користећи алгоритме: Draw by draw procedure for SRS/SRSWOR

Више

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

Орт колоквијум

Орт колоквијум I колоквијум из Основа рачунарске технике I - надокнада СИ - 008/009 (10.05.009.) Р е ш е њ е Задатак 1 a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један,

Више

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan 1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2

Више

1198. Agencija za elektronske komunikacije i poštansku djelatnost, na osnovu člana 11 stav 4 i člana 98 Zakona o elektronskim komunikacijama (''Sl. li

1198. Agencija za elektronske komunikacije i poštansku djelatnost, na osnovu člana 11 stav 4 i člana 98 Zakona o elektronskim komunikacijama (''Sl. li 1198. Agencija za elektronske komunikacije i poštansku djelatnost, na osnovu člana 11 stav 4 i člana 98 Zakona o elektronskim komunikacijama (''Sl. list Crne Gore'', broj 40/13) i Plana namjene radio-frekvencijskog

Више

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00

Више

Microsoft PowerPoint - 10 PEK EMT Logicka simulacija 1 od 2 (2012).ppt [Compatibility Mode]

Microsoft PowerPoint - 10 PEK EMT Logicka simulacija 1 od 2 (2012).ppt [Compatibility Mode] ij Cilj: Dobiti što više informacija o ponašanju digitalnih kola za što kraće vreme. Metod: - Detaljni talasni oblik signala prikazati samo na nivou logičkih stanja. - Simulirati ponašanje kola samo u

Више

Microsoft PowerPoint - 03-Slozenost [Compatibility Mode]

Microsoft PowerPoint - 03-Slozenost [Compatibility Mode] Сложеност алгоритама (Програмирање 2, глава 3, глава 4-4.3) Проблем: класа задатака истог типа Велики број различитих (коректних) алгоритама Величина (димензија) проблема нпр. количина података које треба

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike

Више

9. : , ( )

9.  :  ,    ( ) 9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе

Више

AKVIZICIJA PODATAKA SA UREĐAJEM NI USB-6008 NI USB-6008 je jednostavni višenamjenski uređaj koji se koristi za akviziciju podataka (preko USBa), kao i

AKVIZICIJA PODATAKA SA UREĐAJEM NI USB-6008 NI USB-6008 je jednostavni višenamjenski uređaj koji se koristi za akviziciju podataka (preko USBa), kao i AKVIZICIJA PODATAKA SA UREĐAJEM NI USB-6008 NI USB-6008 je jednostavni višenamjenski uređaj koji se koristi za akviziciju podataka (preko USBa), kao i za generisanje željenih izlaznih signala (slika 1).

Више

Microsoft Word - 13pavliskova

Microsoft Word - 13pavliskova ПОДЗЕМНИ РАДОВИ 4 (5) 75-8 UDK 6 РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ БЕОГРАД YU ISSN 5494 ИЗВОД Стручни рад УПОТРЕБА ОДВОЈЕНОГ МОДЕЛА РЕГЕНЕРАЦИЈЕ ЗА ОДРЕЂИВАЊЕ ПОУЗДАНОСТИ ТРАНСПОРТНЕ ТРАКЕ Павлисковá Анна, Марасовá

Више

Slide 1

Slide 1 Merni sistemi u računarstvu, http://automatika.etf.rs/sr/13e053msr Merna nesigurnost tipa A doc. dr Nadica Miljković, kabinet 68, nadica.miljkovic@etf.rs Prezentacija za ovo predavanje je skoro u potpunosti

Више

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1 1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)

Више

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www. ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело

Више

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6 УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ -oбавезна садржина- свака рубрика мора бити попуњена (сви подаци уписују се у одговарајућу рубрику, а

Више

Europass

Europass Biografija Prezime/Ime Adresa Raković Predrag Lični podaci Bul Save Kovačevića 121 Podgorica Telefon 067207776 Mobilni telefon(i) 067207776 E-mail 067207776@t-mobile.me, Nacionalnost Crnogorac Datum rođenja

Више

P9.1 Dodela resursa, Bojenje grafa

P9.1 Dodela resursa, Bojenje grafa Фаза доделе ресурса Ова фаза се у литератури назива и фазом доделе регистара, при чему се под регистрима подразумева скуп ресурса истог типа. Додела регистара променљивама из графа сметњи се обавља тзв.

Више

Извештај о резултатима завршног испита на крају основног образовања и васпитања у школској 2013/2014. години

Извештај о резултатима завршног испита на крају основног образовања и васпитања у школској 2013/2014. години Извештај о резултатима завршног испита на крају основног образовања и васпитања у школској 2013/2014. години Садржај Општи подаци... 3 1. Анализа 1... 4 2. Анализа 2... 4 3. Анализа 3... 5 4. Анализа 4...

Више

Slide 1

Slide 1 Matrica ciljeva Metode podrške menadžmentu tehnologije 1. Predviđanje: DELFI PATTERN 2. Izbor tehnologije: METOD POREĐENJA TROŠKOVA METOD BODOVANJA METOD RANGIRANJA AHP TEM NEW TECH EXPERT CHOICE 3. Ocena

Више

Microsoft Word - Master 2013

Microsoft Word - Master 2013 ИСПИТНИ РОК: ЈУН 2018/2019 МАСТЕР АКАДЕМСКЕ СТУДИЈЕ (АКРЕДИТАЦИЈА 2013) Студијски програм: ЕЛЕКТРОЕНЕРГЕТИКА Семестар 17.06.2019 Статички електрицитет у технолошким процесима Електронска кола за управљање

Више

ELEKTRONIKA

ELEKTRONIKA МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

Више

Paper Title (use style: paper title)

Paper Title (use style: paper title) Статистичка анализа коришћења електричне енергије која за последицу има примену повољнијег тарифног става Аутор: Марко Пантовић Факултет техничких наука, Чачак ИАС Техника и информатика, 08/09 e-mal адреса:

Више

Konstrukcija linearnih višekoračnih metodi Postoje tri važne familije višekoračnih metoda: Adamsovi metodi Adams-Bashfortovi metodi kod kojih je ρ(w)

Konstrukcija linearnih višekoračnih metodi Postoje tri važne familije višekoračnih metoda: Adamsovi metodi Adams-Bashfortovi metodi kod kojih je ρ(w) Konstrukcija linearnih višekoračnih metodi Postoje tri važne familije višekoračnih metoda: Adamsovi metodi Adams-Bashfortovi metodi kod kojih je ρ(w) = w k w k 1 Adams-Moultonovi metodi kod kojih je ρ(w)

Више

Microsoft PowerPoint - jkoren10.ppt

Microsoft PowerPoint - jkoren10.ppt Dickey-Fuller-ov test jediničnog korena Osnovna ideja Različite determinističke komponente Izračunavanje test-statistike Pravilo odlučivanja Određivanje broja jediničnih korena Algoritam testiranja Prošireni

Више

Uvod u statistiku

Uvod u statistiku Uvod u statistiku Osnovni pojmovi Statistika nauka o podacima Uključuje prikupljanje, klasifikaciju, prikaz, obradu i interpretaciju podataka Staistička jedinica objekat kome se mjeri neko svojstvo. Svi

Више

Прва економска школа Београд РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ СТАТИСТИКЕ март године ОПШТЕ ИНФОРМАЦИЈЕ И УПУТСТВО ЗА РАД Укупан број такмичарских

Прва економска школа Београд РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ СТАТИСТИКЕ март године ОПШТЕ ИНФОРМАЦИЈЕ И УПУТСТВО ЗА РАД Укупан број такмичарских Прва економска школа Београд РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ СТАТИСТИКЕ 9-30. март 019. године ОПШТЕ ИНФОРМАЦИЈЕ И УПУТСТВО ЗА РАД Укупан број такмичарских задатака је 10. Број поена за сваки задатак означен је

Више

My_P_Red_Bin_Zbir_Free

My_P_Red_Bin_Zbir_Free БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,

Више

Microsoft Word - Plan raspodjele radio-frekvencija iz opsega MHz_predlog.docx

Microsoft Word - Plan raspodjele radio-frekvencija iz opsega MHz_predlog.docx CRNA GORA AGENCIJA ZA ELEKTRONSKE KOMUNIKACIJE I POŠTANSKU DJELATNOST Na osnovu člana 8, 9 i 19, a u vezi člana 64 Zakona o elektronskim komunikacijama (''Sl. list Crne Gore'', br. 50/08, 53/09-14 čl.

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 8 Vektori u prostoru. Skalarni proizvod vektora Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 8 1 / 11 Vektori u prostoru i pravougli koordinatni

Више

FTN Novi Sad Katedra za motore i vozila Potrošnja goriva Teorija kretanja drumskih vozila Potrošnja goriva

FTN Novi Sad Katedra za motore i vozila Potrošnja goriva Teorija kretanja drumskih vozila Potrošnja goriva Ključni faktori: 1. ENERGIJA potrebna za kretanje vozila na određenoj deonici puta Povećanje E K pri ubrzavanju, pri penjanju, kompenzacija energetskih gubitaka usled dejstva F f i F W Zavisi od parametara

Више

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno

Више

Орт колоквијум

Орт колоквијум Задатак 1 I колоквијум из Основа рачунарске технике I - надокнада - 008/009 (16.05.009.) Р е ш е њ е a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један, лако

Више

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je Verovatnoća - kolokvijum 17. decembar 2016. 1. Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je 0.8. Ako je ispit težak, verovatnoća da se prvo pitanje

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 4 Ekscentricitet konusnih preseka i klasifikacija kvadratnih krivih Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 4 1 / 15 Ekscentricitet

Више

Microsoft Word - oae-09-dom.doc

Microsoft Word - oae-09-dom.doc ETF U BEOGRADU, ODSEK ZA ELEKTRONIKU Milan Prokin Radivoje Đurić Osnovi analogne elektronike domaći zadaci - 2009 Osnovi analogne elektronike 3 1. Domaći zadatak 1.1. a) [5] Nacrtati direktno spregnut

Више

Microsoft Word - 4.Ee1.AC-DC_pretvaraci.10

Microsoft Word - 4.Ee1.AC-DC_pretvaraci.10 AC-DC ПРЕТВАРАЧИ (ИСПРАВЉАЧИ) Задатак 1. Једнофазни исправљач са повратном диодом, са слике 1, прикључен на напон 1 V, 5 Hz напаја потрошач велике индуктивности струјом од 1 А. Нацртати таласне облике

Више

ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д)

ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д) ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = х; б) у = 4х; в) у = х 7; г) у = 5 x; д) у = 5x ; ђ) у = х + х; е) у = x + 5; ж) у = 5 x ; з) у

Више

ПА-4 Машинско учење-алгоритми машинског учења

ПА-4 Машинско учење-алгоритми машинског учења ПА-4 Машинско учење-алгоритми машинског учења Машинско учење увод и основни појмови Деф: the desgn and development of algorthms that allow computers to mprove ther performance over tme based on data sensor

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6 УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ -oбавезна садржина- свака рубрика мора бити попуњена (сви подаци уписују се у одговарајућу рубрику, а

Више

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt Полупречник унутрашњег проводника коаксијалног кабла је Спољашњи проводник је коначне дебљине унутрашњег полупречника и спољашњег Проводници кабла су начињени од бакра Кроз кабл протиче стална једносмерна

Више

VNLab

VNLab CommLab CommLab 22/23 (2..22) PCM (Pulse Code Modulation) Impulsna kodna modulacija Cilj vežbe Cilj vežbe je upoznavanje sa PCM modulacijom. PCM predstavlja metodu kojom se kontinuirani analogni signal

Више

Microsoft Word - Master 2013

Microsoft Word - Master 2013 ИСПИТНИ РОК: СЕПТЕМБАР 2018/2019 МАСТЕР АКАДЕМСКЕ СТУДИЈЕ (АКРЕДИТАЦИЈА 2013) Студијски програм: ЕЛЕКТРОЕНЕРГЕТИКА Семестар 19.08.2019 Електромагнетна компатибилност у електроенергетици Управљање дистрибутивном

Више

Орт колоквијум

Орт колоквијум II колоквијум из Основа рачунарске технике I - 27/28 (.6.28.) Р е ш е њ е Задатак На улазе x, x 2, x 3, x 4 комбинационе мреже, са излазом z, долази четворобитни BCD број. Ако број са улаза при дељењу

Више

Slide 1

Slide 1 Анализа електроенергетских система -Прорачун кратких спојева- Кратак спој представља поремећено стање мреже, односно поремећено стање система. За време трајања кратког споја напони и струје се мењају са

Више

4

4 4.1.2 Eksperimentalni rezultati Rezultati eksperimentalnog istraživanja obrađeni su u programu za digitalno uređivanje audio zapisa (Coll Edit). To je program koji omogućava široku obradu audio zapisa.

Више

Classroom Expectations

Classroom Expectations АТ-8: Терминирање производно-технолошких ентитета Проф. др Зоран Миљковић Садржај Пројектовање флексибилних ; Математички модел за оптимизацију флексибилних ; Генетички алгоритми у оптимизацији флексибилних

Више

Teorija igara

Teorija igara Strategije Strategije igrača B igrača A B 1 B 2... B n A 1 e 11 e 12... e 1n A 2 e 21 e 22... e 2n............... A m e m1 e m2... e mn Cilj: Odrediti optimalno ponašanje učesnika u igri Ako je dobitak

Више

08 RSA1

08 RSA1 Преглед ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције RSA алгоритам Биће објашњено: RSA алгоритам алгоритам прорачунски аспекти ефикасност коришћењем јавног кључа генерисање кључа сигурност проблем

Више

Microsoft Word - III godina - EA - Metodi vjestacke inteligencije

Microsoft Word - III godina - EA - Metodi vjestacke inteligencije Школска година 2018/2019. Предмет Методи вјештачке интелигенције Шифра предмета 2284 Студијски програм Електроенергетика и аутоматика Циклус студија Година студија Семестар Број студената Број група за

Више

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и

Више

Microsoft Word - ETF-journal- Vujicic-Calasan

Microsoft Word - ETF-journal- Vujicic-Calasan SIMULACIJA RADA ELEKTROSTATIČKOG V-C GENERATORA U PRAZNOM HODU I KRATKOM SPOJU Vladan Vujičić, Martin Ćalasan Ključne riječi: Elektrostatički generator, HVDC prenos energije, Prazan hod, Kratak spoj Sažetak:

Више

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)

Више

Задатак 4: Центрифугална пумпа познате карактеристике при n = 2900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у р

Задатак 4: Центрифугална пумпа познате карактеристике при n = 2900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у р Задатак 4: Центрифугална пумпа познате карактеристике при n = 900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у резервоар B. Непосредно на излазу из пумпе постављен

Више

Model podataka

Model podataka Fakultet organizacionih nauka Uvod u informacione sisteme Doc. Dr Ognjen Pantelić Modeliranje podataka definisanje strategije snimanje postojećeg stanja projektovanje aplikativno modeliranje implementacija

Више

My_P_Trigo_Zbir_Free

My_P_Trigo_Zbir_Free Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу

Више

untitled

untitled РАЗЛОМЦИ - III ДЕО - РЕШЕЊА МНОЖЕЊЕ И ДЕЉЕЊЕ РАЗЛОМАКА ПРИРОДНИМ БРОЈЕМ. а) + + + + + + = = = ; б) + + + + + + + + + + = = = 8 ; в) 8 + + + + + + + = 8 = = =.. а) = = = ; б) = = = ; 0 0 в) 0 = = = ; г)

Више

Microsoft Word - Elektrijada_V2_2014_final.doc

Microsoft Word - Elektrijada_V2_2014_final.doc I област. У колу сталне струје са слике када је и = V, амперметар показује I =. Одредити показивање амперметра I када је = 3V и = 4,5V. Решење: а) I = ) I =,5 c) I =,5 d) I = 7,5 3 3 Слика. I област. Дата

Више

PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste

PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, 5.06.019. godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekstenzija se najčešće koristi za tekstualne datoteke? a)

Више

Microsoft Word - 7. cas za studente.doc

Microsoft Word - 7. cas za studente.doc VII Диферeнцни поступак Користи се за решавање диференцијалних једначина. Интервал на коме је дефинисана тражена функција се издели на делова. Усвоји се да се непозната функција између сваке три тачке

Више

QFD METODA – PRIMER

QFD METODA – PRIMER QFD METODA - PRIMER PROBLEM: U kompaniji X koja se bavi izradom kompjuterskih softvera uočen je pad prodaje konkretnog softvera - Softver za vođenje knjigovodstva. Kompanija X je raspolagala sa jednom

Више

Microsoft PowerPoint - Topic02 - Serbian.ppt

Microsoft PowerPoint - Topic02 - Serbian.ppt Tema 2 Kriterijumi kvaliteta za softverske proizvode DAAD Project Joint Course on Software Engineering Humboldt University Berlin, University of Novi Sad, University of Plovdiv, University of Skopje, University

Више

EMC doc

EMC doc ИСПИТ ИЗ ЕЛЕКТРОМАГНЕТСКЕ КОМПАТИБИЛНОСТИ 28. мај 2018. Напомена. Испит траје 120 минута. Дозвољена је употреба литературе и рачунара. Коначне одговоре уписати у одговарајуће кућице, уцртати у дате дијаграме

Више

MAZALICA DUŠKA.pdf

MAZALICA DUŠKA.pdf SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ELEKTROTEHNIČKI FAKULTET Sveučilišni studij OPTIMIRANJE INTEGRACIJE MALIH ELEKTRANA U DISTRIBUCIJSKU MREŽU Diplomski rad Duška Mazalica Osijek, 2014. SADRŽAJ

Више

Ravno kretanje krutog tela

Ravno kretanje krutog tela Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela

Више

Microsoft PowerPoint - Topic02 - Serbian.ppt

Microsoft PowerPoint - Topic02 - Serbian.ppt Tema 2 Kriterijumi kvaliteta za softverske proizvode DAAD Project Joint Course on Software Engineering Humboldt University Berlin, University of Novi Sad, University of Plovdiv, University of Skopje, University

Више

Konstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun

Konstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun Konstrukcija i analiza algoritama Nina Radojičić februar 2018. 1 Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne funkcije od argumenta n iz skupa N prirodnih brojeva.

Више

Динамика крутог тела

Динамика крутог тела Динамика крутог тела. Задаци за вежбу 1. Штап масе m и дужине L се крајем А наслања на храпаву хоризонталну раван, док на другом крају дејствује сила F константног интензитета и правца нормалног на штап.

Више

Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013./ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani

Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013./ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013/2014 1 5 Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani s više obilježja (atributa), ta se obilježja mogu međusobno

Више

DR DRAGOŚ CVETKOVIC DR SLOBODAN SIMIC DISKRETNA MATEMATIKA MATEMATIKA ZA KOMPJUTERSKE NAUKĘ DRUGO ISPRAYLJENO I PROSIRENO IZDANJE HMUJ

DR DRAGOŚ CVETKOVIC DR SLOBODAN SIMIC DISKRETNA MATEMATIKA MATEMATIKA ZA KOMPJUTERSKE NAUKĘ DRUGO ISPRAYLJENO I PROSIRENO IZDANJE HMUJ DR DRAGOŚ CVETKOVIC DR SLOBODAN SIMIC DISKRETNA MATEMATIKA MATEMATIKA ZA KOMPJUTERSKE NAUKĘ DRUGO ISPRAYLJENO I PROSIRENO IZDANJE HMUJ Sadrżaj Predgovor Iz predgovora prvoni izdanju knjige "Diskretne mateiuatićke

Више