Microsoft Word - vjezba_1_grupa_B.docx

Величина: px
Почињати приказ од странице:

Download "Microsoft Word - vjezba_1_grupa_B.docx"

Транскрипт

1 Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Zavod za elektroničke sustave i obradbu informacija Svojstva signala i Fourierove transformacije Signali i sustavi (FER-2) - Laboratorijska vježba 1. Grupa B 1. Uvod Laboratorijske vježbe iz Signala i sustava zamišljene su da približe studenta problematici analize i simulacije sustava. Sve vježbe se izvode na računalu, a koristi se programski sustav MATLAB. Osim što posjeduje mogućnost izvođenja raznih jednostavnih i izuzetno složenih matematičkih operacija, MATLAB ima i modul Simulink koji je zamišljen kao alat za brzo i jednostavno simuliranje raznih sustava. S MATLABom i Simulinkom ste se upoznali na LiV-u MATLAB. Svrha ove laboratorijske vježbe je pojasniti određene segmente gradiva s predavanja te upoznati studente s primjenom MATLAB-a na rješavanje zadataka iz područja reprezentacije, svojstava, te frekvencijske analize signala. Od studenta se očekuje da će nakon ove vježbe moći uz pomoć MATLAB-a konstruirati različite oblike kontinuiranih i diskretnih signala, te da će moći odrediti Fourierovu transformaciju i nacrtati spektar nekog signala. 2. Priprema Prisjetite se kako se pišu MATLAB m-funkcije te kako se koristi Simulink (vježbe 2. i 4. sa LiV-a MATLAB). Kao podsjetnik vam osim materijala korištenih na LiV-u MATLAB može poslužiti i priručnik Kratke upute za korištenje MATLAB-a koji je dostupan na stranicama predmeta. Osim toga, prisjetite se svega što ste naučili o Fourierovom redu i Fourierovoj transformaciji. Prije dolaska na laboratorijske vježbe korisno je pročitati sve zadatke koje ćemo raditi. Primijetite da uz neke zadatke piše (PRIPREMA). To su zadaci koje morate riješiti prije dolaska na vježbu. Rješenja uredno napišite rukom na papiru. U zaglavlje svakog papira s pripremom napišite vaše ime i prezime te JMBAG. Pripremni zadaci su: 3.1-6a, 3.1-8c, 3.2-1a, 3.2-2a. 3. Rad u laboratoriju Prije početka rada uključite dnevnik (naredba diary). Bez obzira na dnevnik također vam preporučamo da rješenje svakog zadatka spremite kao MATLAB m-skriptu čije ime je redni broj zadatka. Bodove iz laboratorija stječete tijekom vježbi. Prva laboratorijska vježba nosi tri boda. Točno napisana priprema vam donosi jedan bod. U zadnjem satu laboratorijskih vježbi (ili prije ako ste prije gotovi s vježbom) dežurni asistent će obići studente te svakog od vas zamoliti da demonstrira rješenje nekoliko zadanih zadataka unutar ove 1

2 vježbe. Ako uspješno demonstrirate zadatak 1 (jedan bod) i ako točno odgovorite na postavljeno pitanje vezano uz zadatak (još jedan bod) dobivate preostala dva boda. Svaki student može samo jednom demonstrirati rješenje zadatka i odgovarati. Ako krivo odgovorite ili ako je demonstrirano rješenje zadatka krivo ne dobivate bodove. NEMA popravnih zadataka! Dio zadataka označen je kao (PRIPREMA), dok je dio označen kao (ZA ONE KOJI ŽELE ZNATI VIŠE). Zadatke za pripremu ste riješili prije vježbi, dok zadatke za one koji žele znati više ne trebate rješavati. Predlažemo da ih preskočite te se vratite na njih ako obavezne zadatke završite prije predviđenog vremena Svojstva signala Prvi dio prve laboratorijske vježbe se bavi svojstvima signala. 5 minuta Zadatak Jednodimenzionalni kontinuirani i diskretni signali Koristeći MATLAB nacrtajte sljedeće signale: 1. x(t) = sin(4t) + 2cos(8t) 2. x(n) = sin(3n) Za crtanje kontinuiranog signala koristite naredbu ezplot, a za crtanje diskretnog signala naredbu stem:» syms t % definiramo simboličku varijablu t» ezplot(sin(t)) % crtamo kontinuirani signal sin(t)» stem(sin([0:30])) % crtamo 31 uzorak diskretnog signala 15 minuta Zadatak Pisanje m funkcije koja opisuje jednodimenzionalni signal Za tri signala prikazana na slici 1. napišite MATLAB funkcije koje računaju vrijednosti signala za zadano vrijeme. Korištenjem tih funkcija nacrtajte sva tri zadana signala. Na slikama podesite vremensku os tako da se dobivene slike poklapaju sa slikama iz ovih uputa. Označite vremensku os slovom t, a ordinate s x 1 (t), y 1 (t) i x 2 (t) respektivno. Neka se tri datoteke koje sadrže napisane funkcije zovu x1.m, x2.m i y1.m (te napisane funkcije ćete koristit kasnije u drugoj vježbi). Kao pomoć navodimo jednu mogućnost kako napisati kod funkcije x1: 1. function y=x1(t) 2. % SIS - Laboratorijske vježbe - zadatak % Funkcija računa vrijednost signala x1 za zadani t % Ulazni argument moze biti vektor pa za svaki t racunamo izlaz. 6. for i = 1 : numel(t) 7. % Vrijednost funkcije je nula za sve zadane t. 8. y(i) = 0; 9. % Osim na dva intervala, prvom [0,1] i drugom [3,4]. 10. if (0 <= t(i)) & (t(i) <= 1) 11. y(i) = 1; 12. end 13. if (3 <= t(i)) & (t(i) <= 4) 14. y(i) = 1; 15. end 16. end 1 Demonstracija će vam biti jednostavnija ako ste napisali m-skriptu jednostavno pozovete tu skriptu. Ako niste pisali m-skripte, iskoristite dnevnik. Dnevnik otvorite u ugrađenom editoru i odaberete dio koji odgovara rješenju zadatka kojeg tražimo. Pritiskom na desnu tipku miša dobivate izbornik iz kojega je potrebno odabrati Evaluate Selection. MATLAB tada izvršava označeni dio te crta sve slike i prikazuje sve rezultate. 2

3 Kada smo tri signala napisali kao MATLAB funkcije za crtanje se koristi naredba plot:» t=[-2:0.01:5]; % definiramo trenutke u kojima računamo x1» plot(t, x1(t)) % crtamo x1 za definirane trenutke t Slika 1. Kontinuirani signal 5 minuta Zadatak Dvodimenzionalni signal (slika) a) Konstruirajte sliku u MATLAB-u korištenjem naredbe imagesc (ili image):» v=[1:64]; % definiramo indekse boja» imagesc(v) % prikazujemo sliku b) Prema primjeru iz zadatka a) kreirajte sliku koja ima sinusoidalne oscilacije uzduž x- osi (intenzitet se mijenja kao sinus funkcija) koje nacrtane daju vertikalne pruge. Prije prikaza slike odaberite paletu koju dobivate naredbom colormap(bone). 10 minuta Zadatak Trodimenzionalni signal (video) U MATLAB-u je moguće više slika spojiti u jedan video signal. Koristimo li bilo koju naredbu za crtanje (plot, stem, image, imagesc itd.) njen rezultat možemo dodati u video signal naredbom getframe:» colormap(gray) % odabiremo sivu paletu» imagesc(sin(v/10)) % prikazujemo sliku (skoro pa 3.1-3b )» F(1)=getframe % prikazanu sliku spremamo kao prvu sliku u % video signal F Sada kada znamo kako dodati pojedinu sliku u video korištenjem for petlje možemo generirati više slika odjednom. Stvoreni film se pregledava naredbom movie:» for i=1:30 % kreiramo 30 slika našeg filma u petlji stem(sin(v/10+i)); % stem morate zamijeniti s naredbom koja F(i)=getframe; % će nacrtati slike koju tražimo od vas end» movie(f) % pregledavamo film 3

4 Koristeći navedeni predložak kreirajte film u kojem se vide vertikalne pruge koje se kreću ulijevo. Korisite bone paletu boja. 10 minuta Zadatak Preklapanje spektra u vremenskoj domeni (eng. aliasing) (ZA ONE KOJI ŽELE ZNATI VIŠE) Zadan je signal xk( n) = sin( ω kn), pri čemu je ω k = 2π k 5. Koristeći naredbu stem nacrtajte na četiri slike signal xk ( n ) za k = 1, 2, 4,6. Neka je korak n iz intervala [0, 9]. Koliko različitih signala ste nacrtali? Koji signali su jednaki? Zašto? Za crtanje više signala na jednoj slici koristite naredbu subplot. 15 minuta Zadatak Periodičnost diskretnog signala a) (PRIPREMA) Ispitajte koji od zadanih signala su periodični te koji im je temeljni period: 1. πn πn f1 ( n) = sin cos ( ) 2 πn f3 n = n 8 3. sin b) Nacrtajte sve zadane signale na intervalu n [ 0,31] te pomoću slike utvrdite koji su signali periodički i koliki im je temeljni period! c) Ukoliko pomnožite signale pod 1. i 2., odnosno pod 1. i 3. hoće li dobiveni signali biti periodički? Koliki je njihov temeljni period? Kada množite signale član po član morate dodati točku prije operatora. Dakle:» n=[0:10]; % definiramo korak n» f1=sin(pi*n); f2=cos(pi*n); % signali f1 i f2» y=f1.* f2 % ovo je umnožak signala f1 i f2 10 minuta Zadatak Periodičnost kontinuiranog signala 2π 2π (ZA ONE KOJI ŽELE ZNATI VIŠE) Kreirajte simbolički izraz za signal x() t = sin t sin t T T. Koristeći naredbu ezplot nacrtajte zadani signal za T = 4,8,16. Koliki je temeljni period signala izražen preko T? 20 minuta Zadatak Energija i snaga signala a) Kreirajte simboličke izraze za signale: 1. cos 2. sin b) Koristeći naredbu ezplot nacrtajte dva perioda oba signala. c) (PRIPREMA) Izračunajte analitički energiju i snagu signala. d) Definirajte simboličke izraze E1 i E2 kao energiju zadanih signala jedan i dva respektivno. Energiju definirajte i promatrajte isključivo na intervalu [ a, a]. Energija je definirana kao integral kvadrata signala, pri čemu prema uvjetu zadatka integriramo samo na intervalu [ a, a]: 4

5 » syms t a % t i a su simboličke varijable» E1=int(cos(pi*t/5)*cos(pi*t/5),t,-a,a) % E1 je energija E1 = (5*cos(1/5*a*pi)*sin(1/5*a*pi)+a*pi)/pi e) Izračunajte energiju E T /2 oba signala na jednom periodu korištenjem simboličkih izraza T iz podzadatka d), odnosno uvrstite polovinu perioda 2 za vrijednost parametra a. Koristite naredbu subs za uvrštavanje vrijednosti u simbolički izraz:» subs(e1, a, 4) % u izrazu E1 mijenjamo a sa Za svaki signal korištenjem naredbe ezplot nacrtajte kako energija ovisi o parametru a, pri čemu uzmite da je a iz intervala [0, 30]. Kako se energija E a mijenja s promjenom parametra a? Koju vrijednost E a očekujete za a +? f) Definirajte P1 i P2 kao simboličke izraze koji predstavljaju snagu signala na intervalu [ a, a]. Nacrtajte, opet koristeći naredbu ezplot, snage oba signala signala za a iz 1 intervala, Kako se ponaša snaga kada se a povećava? Iz grafova procijenite za oba signala kojoj vrijednosti teži snaga ako a +. Usporedite snagu P s energijom 1 E! T T /2 g) Zašto očekujete da će snaga P a za oba signala konvergirati k istoj vrijednosti? 3.2. Frekvencijska analiza vremenski kontinuiranih signala Drugi dio prve laboratorijske vježbe bavi se Fourierovim transformacijama, i to frekvencijskom analizom vremenski kontinuiranih signala. 15 minuta Zadatak Fourierov red Fourierov red se koristi za analizu periodičkih kontinuiranih signala i određen je izrazima 1 Pri tome je T 0 period signala, dok je ω 0 kružna frekvencija povezana s periodom preko izraza 2π/T 0 = ω 0. Primjer rastava periodičkog signala u Fourierov red dan je na slici 2. 5

6 Slika 2. Fourierov red Za određivanje Fourierovog reda u MATLAB-u koristimo Symbolic Toolbox s time da računamo po definiciji jer ne postoji naredba koja izravno računa Fourierov red. Npr. spektar periodički ponavljanih pravokutnih impulsa trajanja T 0 /2 (slika 2.) bi odredili kao:» syms t T0 k <ENT> % potrebne varijable» int(1*exp(-2*pi*j/t0*t*k),-t0/4,t0/4)/t0 <ENT> % integracija 1/2*i*(exp(-1/2*i*pi*k)-exp(1/2*i*pi*k))/pi/k» pretty(simplify(ans)) <ENT> % uljepšavanje rezultata a) (PRIPREMA) Izračunajte Fourierov red signala: x ( t ) = 220cos 100 π t 4. 1 ( ) 5. ( ) π x ( t) = 220cos 100π t + 50sin(300 π t+ ) 2 3 sin(1/2 pi k) pi k b) Korištenjem MATLAB-a odredite rastav signala iz a) dijela zadatka u Fourierov red. Neka period za računanje Fourierovog reda bude T 0 = 1/25. c) Pomoću naredbe stem nacrtajte amplitudni i fazni spektar signala iz a) dijela zadatka. Crtanje simboličkih funkcija po diskretnoj varijabli zahtijeva pisanje skripte:» X1<ENT> % neka X1 sadrži spektar signala x1 po k X1 = -220*(-1+exp(i*pi*k)^2)/pi/exp(i*pi*k)^2/(k^2-4)» A=zeros(51,1); % 51 koeficijent reda ćemo spremiti u A» for n=-25:25 A(n+26)=subs(limit(X1,k,n)); % moramo računati limes za svaki k koji nas end % zanima zbog mogućeg dijeljenja s 0» stem([-25:25],abs(a)) % crtamo amplitudu» stem([-25:25],angle(a)) % crtamo fazu 6

7 20 minuta Zadatak Spektralna gustoća snage Periodički kontinuirani signali imaju beskonačnu energiju i konačnu srednju snagu. Štoviše, kako su signali periodički unutar jednog perioda srednja snaga je uvijek jednaka. Želimo li izračunati snagu iz spektra koristimo Parsevalovu relaciju 1. Pri tome X k 2 predstavlja srednju snagu k-te harmoničke komponente signala. Prikažemo li X k 2 kao funkciju frekvencije kω 0 dobivamo spektralnu gustoću snage 2. a) (PRIPREMA) Izračunajte rastav u Fourierov red niza pravokutnih impulsa jedinične amplitude trajanja T koji se ponavljaju svakih T 0 pri čemu je T 0 > T. Korištenjem Parsevalove relacije odredite snagu signala. b) Korištenjem MATLAB-a odredite Fourierov red signala iz a) dijela zadatka. Neka T i T 0 budu simboličke varijable. c) Nacrtajte amplitudni i fazni spektar te spektralnu gustoću snage za T = 3 i T 0 = 20 te k 100,100. T = 3 i T 0 = 4. Neka je [ ] d) Korištenjem Parsevalove relacije odredite snagu signala, no samo na temelju prvih m spektralnih komponenti. Nacrtajte kako m 1, minuta Zadatak Fourierov integral ovisi o m za [ ] Fourierov integral 3 se koristi za prikaz kontinuiranih signala i određen je izrazima 1 2 Primjer rastava jednog kontinuiranog signala dan je na slici 3. Za računanje Fourierove transformacije u MATLAB-u možete koristiti funkciju fourier (ili alternativno računati izravno definicijske izraze):» syms t» fourier(heaviside(t)) <ENT> % računamo Fourierov transformaciju % step funkcije pi*dirac(w)-i/w» fourier(heaviside(t+1)-heaviside(t-1)) <ENT> exp(-i*w)*(pi*dirac(w)-i/w)-exp(i*w)*(pi*dirac(w)-i/w)» simplify(ans) <ENT> -2*sin(w)/w 2 Umjesto spektralna gustoća snage može se koristiti i izraz gustoća spektra snage, a ponekad čak i samo spektar snage (iako zadnji izraz nije potpuno precizan). 3 Umjesto Fourierov integral često se jednostavno kaže Fourierova transformacija. 7

8 Slika 3. Fourierov integral a) Korištenjem MATLAB-a odredite Fourierovu transformaciju signala iz 3.2-1a zadatka. Usporedite dobivene spektre. b) Korištenjem MATLAB-a odredite Fourierovu transformaciju jednog pravokutnog impulsa jedinične amplitude i trajanja T = 3. Nacrtajte amplitudni i fazni spektar. Usporedite 4 dobivenu transformaciju s rastavom periodičkog niza impulsa iz zadatka U čemu je razlika?» syms t» X=fourier(heaviside(t+1/2)-heaviside(t-1/2)); <ENT>» X=simplify(X) <ENT> 2*sin(w/2)/w» ezplot(abs(x)),[-30,30]) <ENT> % amplituda» ezplot(atan(imag(x)/real(x)),[-30,30]) <ENT> % faza c) (ZA ONE KOJI ŽELE ZNATI VIŠE) Pomaknite u vremenu impuls iz b) dijela zadatka te opet izračunajte i nacrtajte amplitudni i fazni spektar. Što se događa sa spektrom ako pomaknemo signal u vremenu? Što se događa sa signalom ako pomaknemo spektar u frekvenciji? 10 minuta Zadatak Spektralna gustoća energije Za periodičke signale smo računali srednju snagu unutar jednog perioda. Za općeniti kontinuirani signal snagu unutar nekog intervala možemo odrediti kao Želimo li pomoću danog izraza odrediti srednju snagu cijelog signala za većinu aperiodskih signala dobili bi nulu. Stoga se kontinuirani aperiodski signali i signali konačnog trajanja (npr. razni impulsi) obično karakteriziraju preko energije. Za određivanje energije signala opet koristimo Parsevalovu relaciju 4 Primijetite da bi očekivali spektar u kojem se javljaju linije amplitude koja odgovara upravo polovini amplitude zadane harmonijske funkcije jer rastavljamo signal u kombinaciju eksponencijala (kosinus i sinus se mogu zapisati kao zbroj dvije eksponencijale). Umjesto toga dobili smo spektralne linije amplitude koja odgovara amplitudi pomnoženoj s π. Razlog je u tome što se konstanta 1/(2π) nalazi uz integral inverzne transformacije, a ne uz integral za računanje transformacije. 8

9 1 2. Veličina F(ω)F * (ω) = F(ω) 2 nam predstavlja spektralnu gustoću energije. a) Koristeći MATLAB odredite i nacrtajte spektralnu gustoću energije pravokutnog impulsa jedinične amplitude i trajanja T = 3 (impuls iz zadatka 3.2-3b). b) Korištenjem Parsevalove relacije odredite ukupnu energiju signala iz a) dijela zadatka. c) (ZA ONE KOJI ŽELE ZNATI VIŠE) Korištenjem Parsevalove relacije odredite energiju signala, no samo na temelju prvih m spektralnih komponenti. Nacrtajte kako ovisi o m za 1, Literatura 1. John R. Buck, Michael M. Daniel, Andrew C. Singer, Computer Explorations in Signals and Systems using Matlab, 2 nd edition, Prentice Hall, Upper Saddle River, New Jersey, H. Babić, Signali i sustavi (zavodska skripta), FER, Zagreb 1996., 3. Edward A. Lee, Pravin Varaiya, Structure and Interpretation of Signals and Systems, Addison Wesley, T. Petković, Z. Kostanjčar, M. Budišić, B. Jeren, Upute za laboratorijske vježbe iz Signala i sustava, FER, Zagreb, svibanj Ž. Ban, Osnove MATLAB-a, FER, Zagreb, Laboratorij i vještine MATLAB: Uvod u Simulink, FER, Zagreb, T. Petković, Kratke upute za korištenje MATLAB-a, FER, Zagreb, travanj

Slide 1

Slide 1 OSNOVNI POJMOVI Naredba je uputa računalu za obavljanje određene radnje. Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Pisanje programa zovemo programiranje. Programski jezik

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi 3. siječnja 0. od 3:00 do 4:00 RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovitelji Sadržaj Zadaci. 4.... Zadaci 5. 0.... 3 od 8 Zadaci. 4. U sljedećim pitanjima na pitanja odgovaraš upisivanjem

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

ALIP1_udzb_2019.indb

ALIP1_udzb_2019.indb Razmislimo Kako u memoriji računala prikazujemo tekst, brojeve, slike? Gdje se spremaju svi ti podatci? Kako uopće izgleda memorija računala i koji ju elektronički sklopovi čine? Kako biste znali odgovoriti

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

8 2 upiti_izvjesca.indd

8 2 upiti_izvjesca.indd 1 2. Baze podataka Upiti i izvješća baze podataka Na početku cjeline o bazama podataka napravili ste plošnu bazu podataka o natjecanjima učenika. Sada ćete izraditi relacijsku bazu u Accessu o učenicima

Више

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil

Више

Test ispravio: (1) (2) Ukupan broj bodova: 21. veljače od 13:00 do 14:00 Županijsko natjecanje / Osnove informatike Osnovne škole Ime i prezime

Test ispravio: (1) (2) Ukupan broj bodova: 21. veljače od 13:00 do 14:00 Županijsko natjecanje / Osnove informatike Osnovne škole Ime i prezime Test ispravio: () () Ukupan broj bodova:. veljače 04. od 3:00 do 4:00 Ime i prezime Razred Škola Županija Mentor Sadržaj Upute za natjecatelje... Zadaci... Upute za natjecatelje Vrijeme pisanja: 60 minuta

Више

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 vostruki integrali Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod vostruki integral je integral funkcije dvije varijable. Oznaka: f

Више

Microsoft Word - Lekcija 11.doc

Microsoft Word - Lekcija 11.doc Лекција : Креирање графова Mathcad олакшава креирање x-y графика. Треба само кликнути на нови фајл, откуцати израз који зависи од једне варијабле, например, sin(x), а онда кликнути на дугме X-Y Plot на

Више

Microsoft PowerPoint - uvod2008.htm

Microsoft PowerPoint - uvod2008.htm Sustavi za praćenje i vođenje procesa Branko Jeren i Predrag Pale Fakultet elektrotehnike i računarstva Zavod za elektroničke sustave i obradbu signala Pregled uvodnog sata Zašto su mjerenja važna? Zašto

Више

PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije

PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije korake. Uz dobro razrađen algoritam neku radnju ćemo

Више

Microsoft Word - ASIMPTOTE FUNKCIJE.doc

Microsoft Word - ASIMPTOTE FUNKCIJE.doc ASIMPTOTE FUNKCIJE (PONAŠANJE FUNKCIJE NA KRAJEVIMA OBLASTI DEFINISANOSTI) Ovo je jedna od najznačajnijih tačaka u ispitivanju toka funkcije. Neki profesori zahtevaju da se asimptote rade kao. tačka u

Више

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29 MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

Slide 1

Slide 1 0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,

Више

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc)

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc) Zadatak Pokažite, koristeći svojstva esa, da je ( 6 ) 5 Svojstva esa funkcije u točki: Ako je k konstanta, k k c c c f ( ) L i g( ) M, tada vrijedi: c c [ f ( ) ± g( ) ] c c f ( ) ± g( ) L ± M c [ f (

Више

Programiranje 1 drugi kolokvij, 2. veljače Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje,

Programiranje 1 drugi kolokvij, 2. veljače Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, te službeni podsjetnik. Kalkulatori, mobiteli, razne neslužbene tablice, papiri i sl., nisu dozvoljeni! Sva rješenja napišite

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija

Више

Орт колоквијум

Орт колоквијум II колоквијум из Основа рачунарске технике I - 27/28 (.6.28.) Р е ш е њ е Задатак На улазе x, x 2, x 3, x 4 комбинационе мреже, са излазом z, долази четворобитни BCD број. Ако број са улаза при дељењу

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte

Више

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3 Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b

Више

(Microsoft Word - Rje\232enja zadataka)

(Microsoft Word - Rje\232enja zadataka) 1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:

Више

ELEKTRONIKA

ELEKTRONIKA МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

Neodreeni integrali - Predavanje III

Neodreeni integrali - Predavanje III Neodredeni integrali Predavanje III Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Neodredeni integrali Neodredeni integral Tablični integrali Metoda supstitucije Metoda parcijalne

Више

Matrice. Algebarske operacije s matricama. - Predavanje I

Matrice. Algebarske operacije s matricama. - Predavanje I Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

Programiranje 2 popravni kolokvij, 15. lipnja Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanj

Programiranje 2 popravni kolokvij, 15. lipnja Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanj Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, te službeni šalabahter. Kalkulatori, mobiteli, razne neslužbene tablice, papiri i sl., nisu dozvoljeni! Sva rješenja napišite

Више

Uvod u statistiku

Uvod u statistiku Uvod u statistiku Osnovni pojmovi Statistika nauka o podacima Uključuje prikupljanje, klasifikaciju, prikaz, obradu i interpretaciju podataka Staistička jedinica objekat kome se mjeri neko svojstvo. Svi

Више

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robotika Zagreb, 2014. MODEL PROCESA U PROSTORU STANJA

Више

4

4 4.1.2 Eksperimentalni rezultati Rezultati eksperimentalnog istraživanja obrađeni su u programu za digitalno uređivanje audio zapisa (Coll Edit). To je program koji omogućava široku obradu audio zapisa.

Више

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRALI Sastavio: Ante Bilušić Split, rujan 4. 1 Neodredeni

Више

MultiBoot Korisnički priručnik

MultiBoot Korisnički priručnik MultiBoot Korisnički priručnik Autorsko pravo 2006., 2007. Hewlett- Packard Development Company, L.P. Informacije sadržane u ovom dokumentu podložne su promjenama bez najave. Jedina jamstva za HP-ove proizvode

Више

Орт колоквијум

Орт колоквијум Испит из Основа рачунарске технике - / (6.6.. Р е ш е њ е Задатак Комбинациона мрежа има пет улаза, по два за број освојених сетова тенисера и један сигнал који одлучује ко је бољи уколико је резултат

Више

Optimizacija

Optimizacija Optimizacija 1 / 43 2 / 43 Uvod u optimizaciju Zadana funkcija Uvod u optimizaciju f : R n R Cilj: Naći x, točku minimuma funkcije f : - Problem je jednostavno opisati x = arg min x R n f (x). - Rješavanje

Више

Microsoft Word - ASIMPTOTE FUNKCIJA.doc

Microsoft Word - ASIMPTOTE FUNKCIJA.doc ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Више

Državno natjecanje / Osnove informatike Srednje škole Zadaci U sljedećim pitanjima na odgovore odgovaraš upisivanjem slova koji se nalazi ispred

Državno natjecanje / Osnove informatike Srednje škole Zadaci U sljedećim pitanjima na odgovore odgovaraš upisivanjem slova koji se nalazi ispred Zadaci. 8. U sljedećim pitanjima na odgovore odgovaraš upisivanjem slova koji se nalazi ispred točnog odgovora, u za to predviđen prostor. Odgovor Ako želimo stvoriti i pohraniti sliku, ali tako da promjenom

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

Microsoft Word - GRAFICI TRIGONOMETRIJSKIH FUNKCIJA-II deo.doc

Microsoft Word - GRAFICI TRIGONOMETRIJSKIH FUNKCIJA-II deo.doc GRAFICI TRIGONOMETRIJSKIH FUNKCIJA (II deo U prethodnom fajlu ( grafici trigonometrijskih funkcija I deo smo proučili kako se crtaju grafici u zavisnosti od brojeva a,b i c. Sada možemo sklopiti i ceo

Више

Jednadžbe - ponavljanje

Jednadžbe - ponavljanje PRIMJENE NA PRAVOKUTNI TROKUT sin = sin β = cos = cos β = tg kuta tg = tg β = ctg kuta ctg = ctg β = c = p + q Ako su kutovi u trokutu 30 i 60 onda je hipotenuza dva puta veća od kraće katete (c = 2a ili

Више

STABILNOST SISTEMA

STABILNOST SISTEMA STABILNOST SISTEMA Najvaznija osobina sistema automatskog upravljanja je stabilnost. Generalni zahtev koji se postavlja pred projektanta jeste da projektovani i realizovani sistem automatskog upravljanja

Више

1 jmbag ime i prezime Programiranje 2 prvi kolokvij, Rezultati i uvidi u kolokvije: Rezultati u petak, 3.5., navečer na webu, a uvidi u p

1 jmbag ime i prezime Programiranje 2 prvi kolokvij, Rezultati i uvidi u kolokvije: Rezultati u petak, 3.5., navečer na webu, a uvidi u p 1 Rezultati i uvidi u kolokvije: Rezultati u petak 3.5. navečer na webu a uvidi u ponedjeljak 6.5. u 16 sati. Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje te službeni podsjetnik.

Више

Recuva CERT.hr-PUBDOC

Recuva CERT.hr-PUBDOC Recuva CERT.hr-PUBDOC-2019-5-379 Sadržaj 1 UVOD... 3 2 INSTALACIJA ALATA RECUVA... 4 3 KORIŠTENJE ALATA RECUVA... 7 4 ZAKLJUČAK... 13 Ovaj dokument izradio je Laboratorij za sustave i signale Zavoda za

Више

Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 57. ŽUPANIJSKO/KLUPSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA 5.

Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 57. ŽUPANIJSKO/KLUPSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA 5. Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 57. ŽUPANIJSKO/KLUPSKO NATJECANJE MLADIH TEHNIČARA 205. PISANA PROVJERA ZNANJA 5. RAZRED Zaporka učenika: Ukupan zbroj bodova pisanog

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,

Више

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.

Више

MathFest 2016 Krapinsko zagorske županije 29. travnja Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje

MathFest 2016 Krapinsko zagorske županije 29. travnja Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje MathFest 2016 Krapinsko zagorske županije 29. travnja 2016. Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje 90 minuta. Zadatci (njih 32) podijeljeni su u dvije

Више

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka II i III, Pravilnika o načinima, postupcima i elementima

Више

CARNET Helpdesk - Podrška obrazovnom sustavu e-dnevnik upute za nadzor razrednih knjiga tel: fax: mail:

CARNET Helpdesk - Podrška obrazovnom sustavu e-dnevnik upute za nadzor razrednih knjiga tel: fax: mail: Sadržaj... 1 1. Predgovor... 2 2. Prijava u sustav... 2 3. Postavke... 3 4. Kreiranje zahtjeva za nadzorom razrednih knjiga... 4 5. Pregled razredne knjige... 6 5.1 Dnevnik rada... 7 5.2 Imenik... 11 5.3

Више

9. : , ( )

9.  :  ,    ( ) 9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) 5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj

Више

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p Numerička matematika 11. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. predavanje dodatak p. 1/46 Sadržaj predavanja dodatka

Више

NAZIV PREDMETA OBLIKOVANJE WEB STRANICA Kod SIT132 Godina studija 3. Bodovna vrijednost Nositelj/i predmeta Haidi Božiković, predavač 6 (ECTS) Suradni

NAZIV PREDMETA OBLIKOVANJE WEB STRANICA Kod SIT132 Godina studija 3. Bodovna vrijednost Nositelj/i predmeta Haidi Božiković, predavač 6 (ECTS) Suradni NAZIV PREDMETA OBLIKOVANJE WEB STRANICA Kod SIT132 Godina studija 3. Bodovna vrijednost Nositelj/i predmeta Haidi Božiković, predavač 6 (ECTS) Suradnici Status predmeta Ciljevi predmeta Uvjeti za upis

Више

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16 7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r Sveučilište J.J. Strossmayera Fizika 2 Predložak za laboratorijske vježbe Cilj vježbe Određivanje relativne permitivnosti stakla, plastike, papira i zraka mjerenjem kapaciteta pločastog kondenzatora U-I

Више

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija

Више

My_P_Trigo_Zbir_Free

My_P_Trigo_Zbir_Free Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу

Више

LAB PRAKTIKUM OR1 _ETR_

LAB PRAKTIKUM OR1 _ETR_ UNIVERZITET CRNE GORE ELEKTROTEHNIČKI FAKULTET STUDIJSKI PROGRAM: ELEKTRONIKA, TELEKOMUNIKACIJE I RAČUNARI PREDMET: OSNOVE RAČUNARSTVA 1 FOND ČASOVA: 2+1+1 LABORATORIJSKA VJEŽBA BROJ 1 NAZIV: REALIZACIJA

Више

Elektrotehnika, 3. modelarska vježba Katedra za strojarsku automatiku Elektrotehnika Treća modelarska vježba Motori istosmjerne struje 1. Nacrtajte na

Elektrotehnika, 3. modelarska vježba Katedra za strojarsku automatiku Elektrotehnika Treća modelarska vježba Motori istosmjerne struje 1. Nacrtajte na Elektrotehnika Treća modelarska vježba Motori istosmjerne struje 1. Nacrtajte nadomjesnu električnu shemu nezavisno uzbuđenog istosmjernog motora, izvedite pripadnu naponsku jednadžbu armaturnog kruga

Више

Sveučilište u Zagrebu Fakultet prometnih znanosti Zavod za inteligentne transportne sustave Katedra za primijenjeno računarstvo Vježba: #7 Kolegij: Ba

Sveučilište u Zagrebu Fakultet prometnih znanosti Zavod za inteligentne transportne sustave Katedra za primijenjeno računarstvo Vježba: #7 Kolegij: Ba Sveučilište u Zagrebu Fakultet prometnih znanosti Zavod za inteligentne transportne sustave Katedra za primijenjeno računarstvo Vježba: #7 Kolegij: Baze podataka Tema: Osnovna SELECT naredba Vježbu pripremili:

Више

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba

Више

Postojanost boja

Postojanost boja Korištenje distribucije osvjetljenja za ostvaranje brzih i točnih metode za postojanost boja Nikola Banić 26. rujna 2014. Sadržaj Postojanost boja Ubrzavanje lokalnog podešavanja boja Distribucija najčešćih

Више

MAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S

MAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S MAT B MATEMATIKA osnovna razina MAT38.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.

Више

Algebarski izrazi (4. dio)

Algebarski izrazi (4. dio) Dodatna nastava iz matematike 8. razred Algebarski izrazi (4. dio) Aleksandra-Maria Vuković OŠ Gornji Mihaljevec amvukovic@gmail.com 12/21/2010 SADRŽAJ 7. KVADRATNI TRINOM... 3 [ Primjer 18. Faktorizacija

Више

Programiranje 2 0. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 0. predavanje p. 1/4

Programiranje 2 0. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 0. predavanje p. 1/4 Programiranje 2 0. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 0. predavanje p. 1/48 Sadržaj predavanja Ponavljanje onog dijela C-a koji

Више

Oblikovanje i analiza algoritama 4. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb OAA 2017, 4. pr

Oblikovanje i analiza algoritama 4. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb OAA 2017, 4. pr Oblikovanje i analiza algoritama 4. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb OAA 2017, 4. predavanje p. 1/69 Sadržaj predavanja Složenost u praksi

Више

PROJEKT: Vektorizacija gradskih četvrti Grada Zagreba

PROJEKT: Vektorizacija gradskih četvrti Grada Zagreba Vježbe 6 Povezivanje prostornih i atributnih podataka 1. Pokrenite novi projekt u QGIS-u i dodajte podatke: Zagreb_GrCetvrti_HTRS.tif 2.Provjerite da su vam vidljive (uključene) alatne trake Digitaliziranje

Више

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1.

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. MJERA I INTEGRAL završni ispit 6. srpnja 208. (Knjige bilježnice dodatni papiri i kalkulatori nisu dozvoljeni!). (8 bodova) Kao na predavanjima za d N sa P d : a b ] a d b d ] : a i b i R a i b i za i

Више

s2.dvi

s2.dvi 1. Skup kompleksnih brojeva 1. Skupovibrojeva.... Skup kompleksnih brojeva................................. 6. Zbrajanje i množenje kompleksnih brojeva..................... 9 4. Kompleksno konjugirani

Више

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka) . B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji

Више

1

1 Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N

Више

Smjernice za korištenje sustava online prijava Ukoliko imate pristupno korisničko ime i lozinku ili ste navedeno dobili nakon zahtjeva za otvaranje no

Smjernice za korištenje sustava online prijava Ukoliko imate pristupno korisničko ime i lozinku ili ste navedeno dobili nakon zahtjeva za otvaranje no Smjernice za korištenje sustava online prijava Ukoliko imate pristupno korisničko ime i lozinku ili ste navedeno dobili nakon zahtjeva za otvaranje novog korisničkog računa (poslati zahtjev na javnipoziv.opp@havc.hr

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА О

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА О Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Више

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6

Више

Microsoft Word - Mat-1---inicijalni testovi--gimnazija

Microsoft Word - Mat-1---inicijalni testovi--gimnazija Inicijalni test BR. 11 za PRVI RAZRED za sve gimnazije i jače tehničke škole 1... Dva radnika okopat će polje za šest dana. Koliko će trebati radnika da se polje okopa za dva dana?? Izračunaj ( ) a) x

Више

Opticum HD - Uputstvo za skeniranje kanala.docx

Opticum HD - Uputstvo za skeniranje kanala.docx SKENIRANJE KANALA Ukoliko već imate memorisane kanale, potrebno je da prije početka skeniranja izbrišete sve kanale, a to ćete uraditi na sljedeći način: Pritisnite dugme MENU na daljinskom upravljaču,

Више

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK

Више

Microsoft Word - 12ms121

Microsoft Word - 12ms121 Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +

Више

0.1 OSNOVNA ANALIZA PODATAKA IZ PRO- GRAMA MOLEKULARNE DINAMIKE Ova vježba uvodi osnovne tehnike pri analizi podataka koji dobijamo kao izlaz iz progr

0.1 OSNOVNA ANALIZA PODATAKA IZ PRO- GRAMA MOLEKULARNE DINAMIKE Ova vježba uvodi osnovne tehnike pri analizi podataka koji dobijamo kao izlaz iz progr 0.1 OSNOVNA ANALIZA PODATAKA IZ PRO- GRAMA MOLEKULARNE DINAMIKE Ova vježba uvodi osnovne tehnike pri analizi podataka koji dobijamo kao izlaz iz programa za simulaciju molekularne dinamike, u ovom slučaju

Више

Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 58.ŠKOLSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA - 5. razred Za

Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 58.ŠKOLSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA - 5. razred Za Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 58.ŠKOLSKO NATJECANJE MLADIH TEHNIČARA 206. PISANA PROVJERA ZNANJA - 5. razred Zaporka učenika: (peteroznamenkasti broj i riječ) Ukupan

Више

OD MONOKRISTALNIH ELEKTRODA DO MODELÂ POVRŠINSKIH REAKCIJA

OD MONOKRISTALNIH ELEKTRODA DO MODELÂ POVRŠINSKIH REAKCIJA UVOD U PRAKTIKUM FIZIKALNE KEMIJE TIN KLAČIĆ, mag. chem. Zavod za fizikalnu kemiju, 2. kat (soba 219) Kemijski odsjek Prirodoslovno-matematički fakultet Sveučilište u Zagrebu e-mail: tklacic@chem.pmf.hr

Више

Diferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod

Diferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod 1 math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod znakom integrala analiza Irfan Glogić, Harun Šiljak When guys at MIT or Princeton had trouble doing a certain integral,

Више

Računarski praktikum I - Vježbe 01 - Uvod

Računarski praktikum I - Vježbe 01 - Uvod Prirodoslovno-matematički fakultet Matematički odsjek Sveučilište u Zagrebu RAČUNARSKI PRAKTIKUM I Vježbe 01 - Uvod v2018/2019. Sastavio: Zvonimir Bujanović Gradivo i način polaganja Gradivo: osnove jezika

Више

PRIPREMA ZA IZVOĐENJE NASTAVNE ( METODIČKE ) JEDINICE

PRIPREMA ZA IZVOĐENJE NASTAVNE ( METODIČKE ) JEDINICE DNEVNA PRIPREMA ZA VJERONAUČNI SAT I. OPĆI PODACI O VJERONAUČNOM SATU Škola: OŠ Ivan Kozarac Nijemci Razred: 1 Vjeroučitelj: Ljudevit Gačić Nastavna cjelina: Zajedno smo uvijek radosni Nastavna tema: Susret

Више

1. OPĆE INFORMACIJE 1.1. Naziv kolegija Programiranje 1.6. Semestar Nositelj kolegija dr.sc. Bruno Trstenjak, v. pred Bodovna vrijednost

1. OPĆE INFORMACIJE 1.1. Naziv kolegija Programiranje 1.6. Semestar Nositelj kolegija dr.sc. Bruno Trstenjak, v. pred Bodovna vrijednost 1. OPĆE INFORMACIJE 1.1. Naziv kolegija Programiranje 1.6. Semestar. 1.. Nositelj kolegija dr.sc. Bruno Trstenjak, v. pred. 1.7. Bodovna vrijednost (ECTS) 7 1.3. Suradnici 1.8. Način izvođenja nastave

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Више

My_ST_FTNIspiti_Free

My_ST_FTNIspiti_Free ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити

Више

Elektronika 1-RB.indb

Elektronika 1-RB.indb IME I PREZIME UČENIKA RAZRED NADNEVAK OCJENA Priprema za vježbu Snimanje strujno-naponske karakteristike diode. Definirajte poluvodiče i navedite najčešće korištene elementarne poluvodiče. 2. Slobodni

Више

Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobn

Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobn Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobnost vizualizacije dijela prostora i skiciranja dvodimenzionalnih

Више

Trimble Access Software Upute za korištenje V2.0 Geomatika-Smolčak d.o.o.

Trimble Access Software Upute za korištenje V2.0 Geomatika-Smolčak d.o.o. Trimble Access Software Upute za korištenje V2.0 Geomatika-Smolčak d.o.o. 1. Uvod Ove upute su pisane s ciljem da se kroz rad na konkretnom primjeru omogući brži početak korištenja Trimble Access Software-a.

Више

Development Case

Development Case Tehnička dokumentacija Verzija Studentski tim: Nastavnik: < izv. prof. dr. sc. Nikola Mišković> FER 2 -

Више

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху Одређивање коефицијента пригушења у ваздуху помоћу линеарног хармонијског осцилатора Соња Ковачевић 1, Милан С. Ковачевић 2 1 Прва крагујевачка гимназија, Крагујевац, Србија 2 Природно-математички факултет,

Више

Vektorske funkcije i polja Mate Kosor / 23

Vektorske funkcije i polja Mate Kosor / 23 i polja Mate Kosor 9.12.2010. 1 / 23 Tokom vježbi pokušajte rješavati zadatke koji su vam zadani. Ova prezentacija biti će dostupna na webu. Isti format vježbi očekujte do kraja semestra. 2 / 23 Danas

Више

Toplinska i električna vodljivost metala

Toplinska i električna vodljivost metala Električna vodljivost metala Cilj vježbe Određivanje koeficijenta električne vodljivosti bakra i aluminija U-I metodom. Teorijski dio Eksperimentalno je utvrđeno da otpor ne-ohmskog vodiča raste s porastom

Више

Microsoft Word - Korisnički priručnik za liječnika.docx

Microsoft Word - Korisnički priručnik za liječnika.docx Korisnički priručnik za liječnika DijabetesTV Više uspješnih liječenja. Manje nepotrebnih pregleda. Manje gužvi. Datum: 26. Ožujka 2018. Korisnički priručnik za liječnika 1.0. Funkcionalnost DijabetesTV-a

Више