Azonosító jel: ÉRETTSÉGI VIZSGA május 9. MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA május 9. 8:00 Időtartam: 240 perc Pótlapok
|
|
- Amra Zarić
- пре 5 година
- Прикази:
Транскрипт
1 ÉRETTSÉGI VIZSGA május 9. MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA május 9. 8:00 Időtartam: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli vizsga 1611
2 Важне информације 1. Време за решавање задатака је 240 минута, након његовог истека треба завршити са радом. 2. Редослед решавања задатака је произвољан. 3. У II делу од пет задатака треба решити само четири. Након завршетка рада упишите у доњи квадрат редни број задатка који не решавате! Ако наставник који исправља не може једносмислено да утврди за који задатак не желите да се бодује, онда по датом редоследу за последњи задатак нећете добити бодове. 4. Приликом решавања задатака могу се користити дигитрон (који не може да меморише и приказује текстуалне податке) и логаритамске таблице са четвороцифреним бројевима, коришћење других електронских или писаних средстава је забрањено! 5. У сваком случају запишите поступак који сте применили приликом решавања задатака, јер се за то даје значајан део бодова! 6. Трудите се да значајнији делови прорачуна могу да се прате и контролишу! 7. Приликом поступка решавања коришћење дигитрона без даљег математичког образложења се прихвата за извршавање следећих математичких операција: сабирање, одузимање, множење, дељење, степеновање, кореновање, n!, израчунавање n, коришћење података који се налазе у логаритамским таблицама (sin, cos, tg, log k и њихове инверзне функције), давање приближне вредности за бројеве π и e, одређивање корена једначине другог степена сређене на нулу. Без даљег математичког образложења је дозвољено коришћење дигитрона за израчунавање просека и расипања, али само у случају да се текстом задатка искључиво не захтева приказивање детаљних прорачуна у вези тога. У другим случајевима се прорачуни извршени дигитроном сматрају за кораке без образложења, па се за то не додељују бодови. 8. Међу теоремама које сте користили приликом решавања задатака, оне које сте већ учили у школи и имају свој назив (нпр. Питагорина теорема, теорема о висинама) није потребно тачно објаснити; довољно је споменути назив теореме, али примену треба кратко образложити. За позивање на друге теореме потпуна вредност се прихвата само ако тврдњу заједно са сваким условом тачно изложите (без доказивања), и образложите њихову примену на дати проблем írásbeli vizsga 2 / május 9.
3 9. Коначно решење задатка (одговор који се даје на постављено питање) наведите и у текстуалном облику! 10. Задатке пишите хемијском оловком, а скице можете цртати обичном (графитном) оловком. Деловe који су писани графитном оловком осим скица наставник који исправља неће оцењивати. Ако прецртате неко решење или део решења, тај део се неће вредновати. 11. Код сваког задатка се вреднује (оцењује) само једно решење. У случају да покушате са више решења, једносмислено означите за које решење сте се одлучили! 12. Молимо вас да у сиве правоугаонике ништа не уписујете! 1611 írásbeli vizsga 3 / május 9.
4 1. Решите следећe нeједначинe у скупу реалних бројева! a) lg x < 2 I. b) 4x 5 x 2 x 3 c) 0,5 0, 25 a) 3 бода b) 4 бода c) 5 бодова У.: 12 бодова 1611 írásbeli vizsga 4 / május 9.
5 1611 írásbeli vizsga 5 / május 9.
6 2. Наташин први испит на факултету се састоји из три дела: из једног пројекта, једног писменог задатка и једног усменог одговора. Резултати сва три дела се дају у процентима. Коначни резултат испита приказује само један број, тако што се израчуна пондерисана аритметичка средина резултата три дела датог у процентима: резултат пројекта се узима у обзир са фреквенцијом 2, резултат писменог испита са фреквенцијом 5, усмени одговор са фреквенцијом 3. Наташин пројектни задатак је 73%, а писмени испит је 64%. a) Са колико процената треба да уради усмени одговор, да би јој коначни резултат испита био барем 70%? Приликом сабирања података студената прве године се испоставило да просек резултата испита 75 девојака износи 70%, а да је просек резултата испита момака износи 62%. Просек резултата испита 40 студената који су у студентском дому је 71%, а просек оних који нису у студентском дому је 65%. b) Укупно колико њих са прве године су полагали испит? a) 4 бода b) 7 бодова У.: 11 бодова 1611 írásbeli vizsga 6 / május 9.
7 1611 írásbeli vizsga 7 / május 9.
8 3. У следећој табели су приказане телесне тежине једног друштва од 8 пријатеља. име Алберт Борка Чеда Дејан Емил Филип Гордана Хана тежина (кг) a) Одредите медијану, просек и дисперзију за ових 8 података! Ових 8 особа желе лифтом да стигну на највиши спрат једне зграде, где се одржава пријем који је организовало ово друштво. На вратима малог лифта је натпис: Максимално 3 особе или 230 кг (односно лифтом не може да се вози више од 3 особе, а и укупна тежина оних који се возе лифтом не може бити више од 230 кг). b) Докажите да је довољно да лифт иде три пута да би (придржавајући се прописа) свако од 8 особа могао да стигне на место где се одржава пријем! Приликом реновирања лифта су повећали дозвољену укупну тежину путника на 300 кг, али ограничење у вези броја особа у лифту је остало (лифтом могу да се возе највише 3 особе). c) Узимајући у обзир нови пропис, на колико начина може друштво од 8 чланова да иде горе лифтом, ако би приликом сваке вожње барем две особе ишле заједно? (Два успињања сматрамо различитим ако састав једне групе није идентичан приликом две вожње лифтом, или су групе стигле на највиши спрат у различитом редоследу.) a) 4 бода b) 3 бода c) 7 бодова У.: 14 бодова 1611 írásbeli vizsga 8 / május 9.
9 1611 írásbeli vizsga 9 / május 9.
10 4. a) Колика је површина геометријске слике коју затварају парабола једначине 2 y x x 6 и права чија је једначина x y + 2 = 0? 2 Парабола једначине y x x 6 пресеца осу x у тачкама A и B. b) Израчунајте нагиб тангенте на параболу у тачки B, ако знамо да је прва координата тачке B позитивна! a) 8 бодова b) 6 бодова У.: 14 бодова 1611 írásbeli vizsga 10 / május 9.
11 1611 írásbeli vizsga 11 / május 9.
12 II. Међу задацима 5 9. треба решити четири по слободном избору. Редни број изостављеног задатка упишите у празан квадрат који се налази на страни 2.! 5. У години се на интернету појавила интересантна вест, да су математичари открили нови начин покривања површине (постављања паркета) без празнине, од подударних петоуглова. (На две слике је приказан један део постављеног паркета, односно неколико података за један комад петоугле паркет-плочице: EA = AB = CD = 1, BC = 2, EAB = 90º, ABC = 150º, BCD = 60º.) a) Докажите да две дијагонале повучене из темена B петоугла који се види на слици, међусобно заклапају угао од 75! b) Докажите (на пример коришћењем адиционих теорема, одн. формула), да је 6 2 cos c) Докажите да тачна вредност дужине странице DE датог петоугла износи 2 3. d) Докажите да је a) 5 бодова b) 3 бода c) 5 бодова d) 3 бода У.: 16 бодова 1611 írásbeli vizsga 12 / május 9.
13 1611 írásbeli vizsga 13 / május 9.
14 Међу задацима 5 9. треба решити четири по слободном избору. Редни број изостављеног задатка упишите у празан квадрат који се налази на страни 2.! 6. a) Логичка вредност исказа A и C је тачно, а логичка вредност исказа B је нетачно. Одредите логичке вредности следећих тврдњи! (Овде није потребно да образложите своје одговоре.) (1) A B (2) (A B) C (3) B A (4) A B (5) A (B C) Скуп H је скуп простих графова са десет чворова. Следећа тврдња се односи на елементе скупа H: Ако један (прост граф са десет чворова) има највише 8 грана, онда он не садржи круг. b) Одредите да ли је тврдња тачна или нетачна! Образложите свој одговор! c) Дефинишите обрнуту тврдњу која се односи на елементе скупа H, и одлучите да ли је обрнута тврдња тачна или нетачна! Образложите свој одговор! У једном комплетном графу од десет чворова, од његових грана ћемо случајно изабрати три различите. (Комплетан граф: такав прост граф код којег било која два чвора повезује грана.) d) Одредите вероватноћу да три изабране гране образују један круг! a) 3 бода b) 3 бода c) 4 бода d) 6 бодова У.: 16 бодова 1611 írásbeli vizsga 14 / május 9.
15 1611 írásbeli vizsga 15 / május 9.
16 Међу задацима 5 9. треба решити четири по слободном избору. Редни број изостављеног задатка упишите у празан квадрат који се налази на страни 2.! 7. a) Колико има таквих различитих оштроуглих троуглова, чији углови су (мерено у степенима) различити цели бројеви, а углови су и узастопни чланови једног растућег аритметичког низа? (За два троугла сматрамо да су разликују ако нису слични.) b) Докажите да не постоји такав правилан n угао, чији унутрашњи углови су n степени! c) За један правилан n угао знамо да су му унутрашњи углови, мерени у степенима, цели бројеви. Колико може бити вредност n? a) 4 бода b) 4 бода c) 8 бодова У.: 16 бодова 1611 írásbeli vizsga 16 / május 9.
17 1611 írásbeli vizsga 17 / május 9.
18 Међу задацима 5 9. треба решити четири по слободном избору. Редни број изостављеног задатка упишите у празан квадрат који се налази на страни 2.! 8. У периоду епидемије 0,2% становништва једног великог града се заразило вирусом који је изазвао епидемију. У том периоду, 80 становника тог града путује у истом аутобусу. a) Колика је вероватноћа да од 80 путника у аутобусу има барем један заражен? Одговор дајте заокружен на две децимале! Према прогнозама у вези ширења епидемије, број заражених у великом граду се сваки дан повећава на 105% у односу на вредност од претходног дана. b) Ако би се динамика пораста формирала према прогнозама, за колико дана ће се број укупно заражених повећати са 0,2% становништва на 1% укупног становништва града? Један брзи тест који се може купити у слободној продаји гарантује корисницима да тест приказује зараженост вирусом. У опису производа је наведено следеће: Тест са вероватноћом од 99% приказује зараженост код особа које су заражене вирусом. У случају особа које нису заражене вирусом, тест понекад означава зараженост, али вероватноћа овог погрешног означавања је свега 4%. c) Знамо да је 0,2% становништва града заражено вирусом који је изазва епидемију. Прикажите, ако брзи тест једног случајно изабраног становника града показује зараженост, да ли је вероватноћа мања за 0,05 од вероватноће да се онај који се подвргао тесту заиста заразио (дакле, брзи тест није подобан за поуздано приказивање резултата)! a) 4 бода b) 5 бодова c) 7 бодова У.: 16 бодова 1611 írásbeli vizsga 18 / május 9.
19 1611 írásbeli vizsga 19 / május 9.
20 Међу задацима 5 9. треба решити четири по слободном избору. Редни број изостављеног задатка упишите у празан квадрат који се налази на страни 2.! 9. Жељезницом би желели да транспортујемо 350 тона робе у више пута. У понуди једног транспортног предузећа цена превоза се састоји из два дела. Једним делом треба платити износ пропорционалан квадратној вредности масе транспортоване робе, а другим делом независно од масе робе зарачунавају и основну цену: ако 2 t наручујемо један транспорт t тона робе, за то треба да платимо 205 евра. 10 a) Докажите да ако би у два дела (два пута) транспортовали 350 тона робе, жељезнички трошкови би били најмањи у случају да робу поделимо на два једнака дела! У интересу смањења трошкова жељезничког транспорта, робу тежине 350 тона ћемо поделити на n једнаких делова, и планирамо да сваком приликом жељезницом транспортујемо по један део. (n N + ) b) Докажите да би понуда транспортног предузећа за жељезнички транспорт робе у n пута (прилика) укупно износила 205n евра! n Осим трошкова жељезничког транспорта треба да узмемо у обзир и то да, ако желимо 350 тона робе да расподелимо на n делова једнаке тежине, за извршење посла треба да платимо ( n 1) 400 евра. (n N + ) c) На колико делова једнаке тежине треба да расподелимо робу да би транспорт 350 тона робе био најјефтинији? a) 4 бода b) 3 бода c) 9 бодова У.: 16 бодова 1611 írásbeli vizsga 20 / május 9.
21 1611 írásbeli vizsga 21 / május 9.
22 1611 írásbeli vizsga 22 / május 9.
23 1611 írásbeli vizsga 23 / május 9.
24 I део II део редни број број бодова задатака максималан постигнут максималан постигнут задатак који се не решава Број бодова писменог дела испита 115 датум наставник који исправља I. rész II. rész pontszáma egész számra kerekítve programba elért beírt dátum dátum javító tanár jegyző 1611 írásbeli vizsga 24 / május 9.
Microsoft Word - Matematika_emelt_irasbeli_0911_szerb.doc
ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
ВишеNév:... osztály:... ÉRETTSÉGI VIZSGA május 5. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00 I. Időtartam: 45 perc Pót
ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika
ВишеMicrosoft Word - Matematika_kozep_irasbeli_0911_szerb.doc
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika
ВишеNév:... osztály:... ÉRETTSÉGI VIZSGA május 8. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00 I. Időtartam: 57 perc Pót
ÉRETTSÉGI VIZSGA 2018. május 8. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2018. május 8. 8:00 I. Időtartam: 57 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli
ВишеMicrosoft Word - Matematika_emelt_irasbeli_0802_szerbH.doc
ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
ВишеMicrosoft Word - Matematika_kozep_irasbeli_javitasi_0802.doc
Matematika szerb nyelven középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Важне
ВишеMicrosoft Word - Matematika_kozep_irasbeli_jav_utmut0513V28_szerb.doc
Matematika szerb nyelven középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA SZERB NYELVEN МАТЕМАТИКА KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA МАТУРСКИ ИСПИТ СРЕДЊЕГ СТЕПЕНА Az írásbeli vizsga időtartama: 180
ВишеMicrosoft Word - mat_szerb_kz_1flap.doc
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA СРЕДЊИ СТЕПЕН I. 45 минута Време за решавање задатака је 45 минута, након његовог истека треба завршити са радом. Редослед решавања задатака је произвољан. Приликом
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеMicrosoft Word - Matematika_kozep_irasbeli_javitasi_1112_szerb.doc
Matematika szerb nyelven középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Формални
ВишеMicrosoft Word - Matematika_kozep_irasbeli_1011_horvat.doc
ÉRETTSÉGI VIZSGA 2010. október 19. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 19. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеMicrosoft Word - Matematika_emelt_irasbeli_javitasi.doc
Matematika szerb nyelven emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA SZERB NYELVEN МАТЕМАТИКА EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA ПИСМЕНИ МАТУРСКИ ИСПИТ ВИШЕГ СТЕПЕНА JAVÍTÁSI-ÉRTÉKELÉSI
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/2014. година УПУТСТВО ЗА РАД Тест који треба да решиш
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 018/019. година ТЕСТ МАТЕМАТИКА
ВишеMatematika_kozep_irasbeli_javitasi_1013_horvat
Matematika horvát nyelven középszint 1013 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formalni
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА
ВишеMicrosoft Word - Matematika_emelt_irasbeli_javitasi_0911_szerb.doc
Matematika szerb yelve emelt szit 09 ÉRETTSÉGI VIZSGA 0 május 8 MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Важне информације
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година
ВишеЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА
ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)
ВишеMatematika horvát nyelven középszint Javítási-értékelési útmutató 1813 ÉRETTSÉGI VIZSGA május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI
Matematika horvát nyelven középszint 83 ÉRETTSÉGI VIZSGA 09. május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Važne informacije
ВишеШифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП
Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година СЕДМИ РАЗРЕД ТЕСТ СПОСОБНОСТИ
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 018/019. година МАТЕМАТИКА
ВишеPRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti
PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00
ВишеПрва економска школа Београд РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ СТАТИСТИКЕ март године ОПШТЕ ИНФОРМАЦИЈЕ И УПУТСТВО ЗА РАД Укупан број такмичарских
Прва економска школа Београд РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ СТАТИСТИКЕ 9-30. март 019. године ОПШТЕ ИНФОРМАЦИЈЕ И УПУТСТВО ЗА РАД Укупан број такмичарских задатака је 10. Број поена за сваки задатак означен је
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година
ВишеИнформатичка одељења Математика Република Србија Министарство просвете, науке и технолошког развоја Завод за вредновање квалитета образовања и васпита
Република Србија Министарство просвете, науке и технолошког развоја Завод за вредновање квалитета образовања и васпитања ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ
ВишеPEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla
PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla, 3. mart/ožujak 019. godine Prirodno-matematički fakultet
ВишеMicrosoft Word - Matematika_kozep_irasbeli_javitasi_0611_horvatH.doc
Matematika horvát nyelven középszint 0611 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA HORVÁT NYELVEN MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA PISMENI ISPIT SREDNJEG STUPNJA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
ВишеMatematika horvát nyelven középszint Javítási-értékelési útmutató 1712 ÉRETTSÉGI VIZSGA május 8. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI
Matematika horvát nyelven középszint 171 ÉRETTSÉGI VIZSGA 018. május 8. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Važne informacije
ВишеRepublika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA ZAVRŠNI ISPIT NA KRAJU OSNOVN
Republika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školska 2016/2017. godina TEST
ВишеMATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29
MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 2018/2019. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД Тест
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 01/01. година ТЕСТ МАТЕМАТИКА
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2015/
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2015/2016. година УПУТСТВО ЗА РАД Тест који треба да решиш
ВишеМатематика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }
1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак
ВишеMicrosoft Word - vodic B - konacna
VODIČ B za škole za srednje stručno obrazovanje i obuku školska 2015./2016. godina MATEMATIKA Predmetna komisija: Dina Kamber Maja Hrbat Vernesa Mujačić Mirsad Dumanjić Sadržaj Uvod... 1 Obrazovni ishodi
ВишеMicrosoft Word - 1_Uputstvo-za-ocenjivanje_ZI-2018_Matematika Jun.doc
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 017/018. година ТЕСТ МАТЕМАТИКА
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА О
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
Више(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)
. B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji
ВишеFizika szerb nyelven középszint Javítási-értékelési útmutató 1511 ÉRETTSÉGI VIZSGA május 17. FIZIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI
Fizika szerb nyelven középszint 1511 ÉRETTSÉGI VIZSGA 016. május 17. FIZIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Матурски радови
ВишеMicrosoft Word - Fizika_kozep_irasbeli_javitasi_1011_szerb.doc
Fizika szerb nyelven középszint 1011 É RETTSÉGI VIZSGA 010. október 8. FIZIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Радње треба
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. C. Interval, tvore svi realni brojevi strogo manji od. Interval, 9] tvore svi realni brojevi strogo veći od i jednaki ili manji od 9. Interval [1, 8] tvore svi realni brojevi jednaki ili veći od 1,
ВишеNév:... osztály:... ÉRETTSÉGI VIZSGA május 17. FÖLDRAJZ HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május :00 I. Időtartam: 25 perc P
ÉRETTSÉGI VIZSGA 2019. május 17. FÖLDRAJZ HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2019. május 17. 14:00 I. Időtartam: 25 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli
ВишеМ А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према свој
М А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према својствима (6; 2 + 4) Природни бројеви до 100 (144; 57
ВишеМинистарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ Општинско такмичење из математике ученика основних школа III
25.02.2017 III разред 1. Број ногу Периних паса је за 24 већи од броја њихових глава. Колико паса има Пера? 2. На излет су кренула три аутобуса у којима је било укупно 150 ученика. На првом одмору је из
ВишеNév:... osztály:... ÉRETTSÉGI VIZSGA május 22. FIZIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 22. 8:00 Időtartam: 120 perc Pótlapo
ÉRETTSÉGI VIZSGA 2017. május 22. FIZIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2017. május 22. 8:00 Időtartam: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli
ВишеAzonosító jel: ÉRETTSÉGI VIZSGA május 20. FIZIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA május 20. 8:00 Időtartam: 300 perc Pótlapok sz
ÉRETTSÉGI VIZSGA 2019. május 20. FIZIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2019. május 20. 8:00 Időtartam: 300 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli
ВишеVISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E
VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA PO@AREVAC MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, ELEKTROTEHNIKA, MA[INSTVO PO@AREVAC 007 OBAVEZNO PRO^ITATI!
ВишеMy_ST_FTNIspiti_Free
ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити
ВишеЕКОНОМСКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У ПРИШТИНИ КОСОВСКА МИТРОВИЦА
МАТЕМАТИКА ЗАДАЦИ ЗА ПРИЈЕМНИ ИСПИТ 1. Израчунати вредност израза: а) ; б). 2. Израчунати вредност израза:. 3. Израчунати вредност израза:. 4. Израчунати вредност израза: ако је. 5. Израчунати вредност
ВишеRepublika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školska
Republik Srbij MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školsk 2017/2018. godin TEST MATEMATIKA UPUTSTVO ZA RAD Test
ВишеMy_P_Trigo_Zbir_Free
Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу
ВишеMAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S
MAT B MATEMATIKA osnovna razina MAT38.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.
ВишеNév:... osztály:... ÉRETTSÉGI VIZSGA május 20. FIZIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 20. 8:00 Időtartam: 150 perc Pótlap
ÉRETTSÉGI VIZSGA 2019. május 20. FIZIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2019. május 20. 8:00 Időtartam: 150 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli
ВишеMicrosoft Word - Biologia_kozep_irasbeli_javitasi_0822_szerb.doc
Biológia szerb nyelven középszint 0822 ÉRETTSÉGI VIZSGA 2012. május 15. BIOLÓGIA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Упутство
ВишеМатематика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О
1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. Одреди број елемената скупова: а) A = {x x N и x < 5} A = { } n(a) = б) B = {x
ВишеМатематика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје
1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX
ВишеШифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП
Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ
ВишеPitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja
Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar 5. Teorijska pitanja definicija vektora, kolinearni i komplanarni vektori, definicija
ВишеMicrosoft Word - inicijalni test 2013 za sajt
ИНИЦИЈАЛНИ ТЕСТ ИЗ МАТЕМАТИКЕ ЗА УЧЕНИКЕ ПРВОГ РАЗРЕДА ЗЕМУНСКЕ ГИМНАЗИЈЕ шк. 13 14. Циљ Иницијални тест за ученике првог разреда Земунске гимназије организован је с циљем увида у предзнање ученика, тј.
ВишеАлгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (
Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
ВишеMicrosoft Word - predavanje8
DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).
ВишеUvod u statistiku
Uvod u statistiku Osnovni pojmovi Statistika nauka o podacima Uključuje prikupljanje, klasifikaciju, prikaz, obradu i interpretaciju podataka Staistička jedinica objekat kome se mjeri neko svojstvo. Svi
ВишеPROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije
PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije korake. Uz dobro razrađen algoritam neku radnju ćemo
ВишеPLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)
PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove
Више(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši
ВишеMate_Izvodi [Compatibility Mode]
ИЗВОДИ ФУНКЦИЈЕ ИЗВОДИ ФУНКЦИЈЕ Нека тачке Мо и М чине једну тетиву функције. Нека се тачка М почне приближавати тачки Мо, тј. нека Тачка М постаје тачка Мо, а тетива постаје тангента функције у тачки
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,
ВишеТалесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да
Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и
Више8. razred kriteriji pravi
KRITERIJI OCJENJIVANJA MATEMATIKA 8. RAZRED Učenik će iz nastavnog predmeta matematike biti ocjenjivan usmeno i pismeno. Pismeno ocjenjivanje: U osmom razredu piše se šest ispita znanja i bodovni prag
ВишеPITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l
PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno
ВишеSKRIPTE EKOF 2019/20 skripteekof.com Lekcija 1: Brojevni izrazi Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da nau
Lekcija : Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o razlomcima proširivanje, skraćivanje, upoređivanje; zapis razlomka u okviru mešovitog
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
ВишеOSNOVNA ŠKOLA, VI RAZRED MATEMATIKA
OSNOVNA ŠKOLA, VI RAZRED MATEMATIKA UPUTSTVO ZA RAD Drage učenice i učenici, Čestitamo! Uspjeli ste da dođete na državno takmičenje iz matematike i samim tim ste već napravili veliki uspjeh Zato zadatke
ВишеMicrosoft Word - Mat-1---inicijalni testovi--gimnazija
Inicijalni test BR. 11 za PRVI RAZRED za sve gimnazije i jače tehničke škole 1... Dva radnika okopat će polje za šest dana. Koliko će trebati radnika da se polje okopa za dva dana?? Izračunaj ( ) a) x
ВишеFizika_emelt_irasbeli_javitasi_1311_szerb
Fizika szerb nyelven emelt szint 3 ÉRETTSÉGI VIZSGA 03. május 6. FIZIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Писмене задтаке
ВишеMATEMATIKA IZVEDBENI GODIŠNJI NASTAVNI PLAN I PROGRAM MATEMATIKE OSNOVNA ŠKOLA, 2. razred šk. god Planirala: Višnja Špicar, učitelj RN
IZVEDBENI GODIŠNJI NASTAVNI PLAN I PROGRAM MATEMATIKE OSNOVNA ŠKOLA, 2. razred šk. god. 2014.-15. Uvodni sat (1 sat) Ponavljanje: Rujan 14 sati Tijela u prostoru, Geometrijski likovi (1 sat) Točka, ravna
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza
ВишеMicrosoft Word - Rjesenja zadataka
1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji
ВишеMicrosoft Word - Foldrajz_kozep_irasbeli_jav_utmut_0513_szerb_modos.doc
Földrajz szerb nyelven középszint 0513 ÉRETTSÉGI VIZSGA 2005. május 18. FÖLDRAJZ SZERB NYELVEN ГЕОГРАФИЈА KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA МАТУРСКИ ИСПИТ СРЕДЊЕГ СТЕПЕНА Az írásbeli vizsga időtartama: 120
ВишеMAT-KOL (Banja Luka) Matematički kolokvijum XIV(3)(2008), DEVET RJEŠENJA JEDNOG ZADATKA IZ GEOMETRIJE Dr Šefket Arslanagić 1 i Alija Miminagić 2
T-KOL (anja Luka) atematički kolokvijum XIV()(008), 1-1 DEVET RJEŠENJ JEDNOG ZDTK IZ GEOETRIJE Dr Šefket rslanagić 1 i lija iminagić Samostalno rješavanje malog broja teških problema je, bez sumnje, od
ВишеMicrosoft Word - 1.Operacije i zakoni operacija
1. Operacije i zakoni operacija Neka je S neprazan skup. Operacija dužine n skupa S jeste svako preslikavanje : n n f S S ( S = S S S... S) Ako je n = 1, onda operaciju nazivamo unarna. ( f : S S ) Ako
Више(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.
ВишеMatematikaRS_2.pdf
GIMNAZIJA Informacijsko komunikacijskih tehnologija Razred: drugi NASTAVNI PROGRAM ZA PREDMET: MATEMATIKA; Sedmični broj časova: 3 Godišnji broj časova : 105 Teme: 1. Trigonometrija trougla (18) 2. Stepeni
ВишеPitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 19. decembar Teorijska pitanja 1. V
Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 9. decembar 6 Teorijska pitanja. Vektori: Definicija vektora, kolinearni i koplanarni vektori,
ВишеMy_P_Red_Bin_Zbir_Free
БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,
ВишеAzonosító jel: ÉRETTSÉGI VIZSGA május 13. INFORMATIKA SZERB NYELVEN EMELT SZINTŰ GYAKORLATI VIZSGA május 13. 8:00 A gyakorlati vizsga időt
ÉRETTSÉGI VIZSGA 2014. május 13. INFORMATIKA SZERB NYELVEN EMELT SZINTŰ GYAKORLATI VIZSGA 2014. május 13. 8:00 A gyakorlati vizsga időtartama: 240 perc Beadott dokumentumok Piszkozati pótlapok száma Beadott
ВишеAzonosító jel: биле ÉRETTSÉGI VIZSGA május 17. FIZIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA május 17. 8:00 Az írásbeli vizsga időtart
биле ÉRETTSÉGI VIZSGA 2016. május 17. FIZIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. május 17. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Више(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6
Више08 RSA1
Преглед ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције RSA алгоритам Биће објашњено: RSA алгоритам алгоритам прорачунски аспекти ефикасност коришћењем јавног кључа генерисање кључа сигурност проблем
ВишеMicrosoft Word - Foldrajz_kozep_irasbeli_I0521_horvatH.doc
Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 16. FÖLDRAJZ HORVÁT NYELVEN ZEMLJOPIS 2006. május 16. 14:00 KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA PISMENI ISPIT SREDNJEG STUPNJA I. Időtartam: 20 perc Vrijeme
ВишеGrafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odr
Grafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odrediti njene krajeve. b) Odrediti sledeće skupove: -
ВишеMicrosoft Word - IZVODI ZADACI _I deo_.doc
. C =0 Tablica izvoda. `=. ( )`=. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`=. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0). (sin)`=cos (ovde je >0 i a >0). (cos)`= - sin π. (tg)`= + kπ cos. (ctg)`= kπ
Више