Microsoft Word - Matematika_kozep_irasbeli_jav_utmut0513V28_szerb.doc
|
|
- Marinko Mijatović
- пре 5 година
- Прикази:
Транскрипт
1 Matematika szerb nyelven középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA SZERB NYELVEN МАТЕМАТИКА KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA МАТУРСКИ ИСПИТ СРЕДЊЕГ СТЕПЕНА Az írásbeli vizsga időtartama: 180 perc Време трајања писменог испита: 180 минута JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Упутство за исправљање и оцењивање OKTATÁSI MINISZTÉRIUM
2 Важне информације Формални захтеви: Задатак треба исправити хемијском оловком другачије боје од оне коју користи кандидат, а грешке, недостатке итд. обележити одговарајући наст. пракси. Међу правоугаоницима који су поред задатака у првом је максималан број бодова за тај задатак, а у други наставник уписује постигнут број бодова за тај задатак. У случају потпуно исправног решења (без грешке) у одговарајући правоугаоник је довољно уписати максималан број бодова. У случају решења са недостатком/грешком, молимо да се на задатак напише поједини делимични број бодова. Садржајни захтеви: Код појединих задатака смо дали бодовање за више начина решавања. Уколико се нађе тачно решење различито од наведених, потражите у упутству делове који се подударају и на основу тога извршите бодовање. Бодови у упутству се могу даље разложити. Међутим, број бодова који се додељује може бити само цео број. У случају тачног поступка решавања и коначног решења максималан број бодова се даје и онда ако је код кандидата опис из упутства дат са мање детаља. Ако у решењу има рачунске грешке, нетачности, бодови се не дају само на онај део где је ученик начинио грешку. Ако са погрешним делимичним резултатом даље ради тачним поступком, додељују му се наредни делимични бодови. У случају принципијелне грешке, у оквиру једне мисаоне целине (у упутству означено двоструком линијом) ни за формално тачне математичке кораке се бодови не додељују. Уколико ученик наставља са радом и као почетни податак узима лоше решење које је добио због принципијелне грешке, а даље тачно рачуна у следећој мисаоној целини или делу питања, онда за тај део добија максималан број бодова. Ако се у упутству за решавање у загради налази једна мерна јединица, у случају њеног недостатка је решење потпуне вредности. Од више покушаја решења за један задатак се само једно (већег броја бодова) вреднује. За решења се наградни бодови (бодови који прелазе прописани максимални број за дати задатак или његов део) не могу доделити. За делимичне прорачуне који су са грешкама али их кандидат при решавању задатка није искористио се не одузимају бодови. Од означених задатака у испитном делу II/Б се од 3 задатка бодују само решења за задатка. Кандидат је уписао у квадрат вероватно- редни број задатка чије оцењивање неће ући у укупан број бодова. Према томе, евентуално дато решење за означени задатак ни не треба исправљати. Ако није једносмислено јасно за који задатак кандидат не жели да се бодује, онда ће задатак који се не бодује аутоматски бити онај који је последњи по истакнутом редоследу. írásbeli vizsga 0513 / május 8.
3 1. x 1 = 7. x = 7. Цена капута са попустом је Фт. 3. ( ) 79. A = = Површина квадра: 79 цм. Бод се не даје ако није написана јединица мере. Укупно: 3 бода I 4. α r π t = 360 = 1π cm 37,7cm. Дато тачно решење у било којој форми је. 5. Б 6. У правоуглом троуглу ABC примењујемо Питагорину теорему: e = e = 1 цм. Укупно: 3 бода За цртеж се даје уколико је на њему означен прав угао. Ако нема цртежа или је недовршен, али се из решења једносмислено види да познаје међусобне зависности између полупречника и тангента, онда се даје. И без образложења се даје. írásbeli vizsga / május 8.
4 7. Б или или 0,5 или 5% α 1 = 45. α = се дају ако у било којој форми даје тачно коначно решење. За тачно решење у радијанима се такође дају.ко је назначио и период добија само или Било које тачно решење је. Број бодова се не може разлагати. 11. V = r π m = 10 π 14. V 4398 cm 3. У случају π 3,14 V= 4396 cm3 5 литара = 5000 цм 3, дакле супа не може стати у лонац. Укупно: 4 бода За тачно одређивање запремине лонца се дају 3 бода. Ако уместо полупречника користи пречник, од 3 бода може добити највише. За тачан одговор се даје 1 бод и без претварања јединица. 1. a = 5. írásbeli vizsga / május 8.
5 ( ; 4). 13. II/A се и тада додељује ако је тачан одговор дао прочитајући га са цртежа 5 ( 1) + 4x = 40 x, значи x = 5. Ово је заиста решење(замена или еквиваленција) полазне дате једначине. Укупно: 5 бодова Област дефинисаности: x > 1. * Примена идентичности логаритма: lg 4 x 1 =. ( ) На основу дефиниције логаротма: 4 ( x 1) = 100 x = 6. Контрола. По се додељују и без позивања на правила.. * Укупно: 7 бодова Ако корен контролише заменом, или упоређује са тачно установљеном области дефинисаности, и тачно се позива на еквиваленцију претварања, додељују се оба бода. Ако лоше поставља област дефинисаности, али контролише заменом, добија. Ако добро установи област дефинисаности, али не упореди је са добијеним кореном, онда се од додељује само 1. Ако испитује област дефинисаности, и на основу тога одреди да је x = 6, али не позива се на еквивалентна претварања, такође се даје само. 14. Чланови низа: 6; 6 + d; 6 + d; d = 163. d = 539. Први установљени број: 545. Други установљени број: Укупно: 5 бодова Бројеви који задовољавају дати услов: 8; 1; 16; ; 160. Ови бројеви који следе један другог су чланови једног аритметичког реда. 160 = ( n 1). írásbeli vizsga / május 8.
6 n = S n = 404. S = n Укупно: 7 бодова метара. Укупно: Код 30.-е секунде или у 31.-ој секунди. Ако је назначио више термина, не даје се бод. c) Јанош. d) Број могућих редоследа: = бода 3 бода се дају и ако тачно наброји све могуће редоследе. Ако није потпуно набрајање, али је нашао барем половину могућих случајева, добија по 1-1 бод. Укупно: 3 бода e) Треба испитати два случаја: ако су Делфини у мртвој трци завршили на првом месту, онда је број могућих редоследа: 3 1 ; 1 3 а ако Делфини нису први, онда је број могућих редоследа. Број могућих редоследа је укупно: 9. Укупно: 4 бода Ако ово посебно не напише, али се види из решења, даје се. За тачно набрајање свих случајева се такође дају 4 бода. írásbeli vizsga / május 8.
7 II/B Међу задацима не треба бодовати онај задатак који је ученик означио Дакле тачка се не налази на кружници. x y 1 =. 3 бода ( ) ( ) 49 K ( 1; 1). r = 7. c) Треће теме троугла се налази на симетрали основице. Укупно: 5 бодова За добар одговор дат на основи цртежа дају се бода. Ако ова реченица недостаје, али из решења се јасно види да то користи, онда се даје. Средина дужи AB : F (3,5; 3,5). Нормални вектор симетрале дужи AB је: n (7; 7). Једначина симетрале је: x + y = 7. Треће теме троугла се налази у пресеку кружнице и симетрале: ( x + 1) + ( y 1) = 49. y = 7 x x 5x 6 = 0. x 1 = 6; x 1. y 1 = 1; y = 8. C 1( 6; 1) és C ( 1; 8). Само се тада добија бод ако тачке A, B, C заиста чине троугао. 17. Укупно: 10 бод. 10 1,41 85 Јонатан јабука је отприлике 41% скупља. írásbeli vizsga / május 8.
8 = = Ft. c) Укупна количина свих врста јабука је 540 кг Просечна цена јабуке: = ,6 Ft. Укупно: 3 бода d) Централни углови који припадају појединим количинама врста јабука: kg: = 40 ; kg: 90 ; 150 kg: 100 ; 195 kg: 130. Ако су добра само 3 прорачуна, даје се 1 бод.прихватају се одступања која се добијају на основи заокруживања. голден јонатан старкинг Ако се из кружног дијаграма не види јасно којој врсти јабука који кружни исечак припада, дају се само. ајдаред 4 бода Укупно: 6 бодова e) Однос просутих комада јонатан и ајдаред јабука: 1,5 : 1. 1,5 5 Тражена вероватноћа: = 0,56.,5 9 Укупно: 4 бода írásbeli vizsga / május 8.
9 18. јесењи пролећни зимски Бројеве 8; 10; 10, 13 треба уписати у пресеке. 4 бода Укупно: 4 бода Само у зиму је наступило: x ученика. Само у јесен је наступило: x ученика. Само у пролеће је наступило: x ученика. x Једначина: x + + x = 188. Одатле: x = 4. Дакле 4 ученика су наступила само у зиму. Укупно: 8 бодова c) Из A разреда се l5 ученика могу изабрати на 3 начина. 5 Из Б разреда се 15 ученика могу изабрати на 8 начина Број повољних случајева: Број укупних случајева: Тражена вероватноћа: 0, Укупно: 5 бодова За тачно установљавање односа се дају укупно 4 бода и онда ако их не упише у скицу скупова.. Бод се даје и без заокруживања вредности. írásbeli vizsga / május 8.
Microsoft Word - Matematika_kozep_irasbeli_javitasi_0802.doc
Matematika szerb nyelven középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Важне
ВишеMicrosoft Word - Matematika_kozep_irasbeli_javitasi_1112_szerb.doc
Matematika szerb nyelven középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Формални
ВишеMicrosoft Word - Matematika_emelt_irasbeli_javitasi.doc
Matematika szerb nyelven emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA SZERB NYELVEN МАТЕМАТИКА EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA ПИСМЕНИ МАТУРСКИ ИСПИТ ВИШЕГ СТЕПЕНА JAVÍTÁSI-ÉRTÉKELÉSI
ВишеMicrosoft Word - Matematika_emelt_irasbeli_javitasi_0911_szerb.doc
Matematika szerb yelve emelt szit 09 ÉRETTSÉGI VIZSGA 0 május 8 MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Важне информације
ВишеMicrosoft Word - Matematika_kozep_irasbeli_javitasi_0611_horvatH.doc
Matematika horvát nyelven középszint 0611 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA HORVÁT NYELVEN MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA PISMENI ISPIT SREDNJEG STUPNJA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
ВишеMicrosoft Word - Matematika_emelt_irasbeli_0911_szerb.doc
ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
ВишеMatematika_kozep_irasbeli_javitasi_1013_horvat
Matematika horvát nyelven középszint 1013 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formalni
ВишеMicrosoft Word - Fizika_kozep_irasbeli_javitasi_1011_szerb.doc
Fizika szerb nyelven középszint 1011 É RETTSÉGI VIZSGA 010. október 8. FIZIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Радње треба
ВишеMicrosoft Word - Matematika_kozep_irasbeli_0911_szerb.doc
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika
ВишеMicrosoft Word - Foldrajz_kozep_irasbeli_jav_utmut_0513_szerb_modos.doc
Földrajz szerb nyelven középszint 0513 ÉRETTSÉGI VIZSGA 2005. május 18. FÖLDRAJZ SZERB NYELVEN ГЕОГРАФИЈА KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA МАТУРСКИ ИСПИТ СРЕДЊЕГ СТЕПЕНА Az írásbeli vizsga időtartama: 120
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 018/019. година ТЕСТ МАТЕМАТИКА
ВишеMicrosoft Word - Biologia_kozep_irasbeli_javitasi_0822_szerb.doc
Biológia szerb nyelven középszint 0822 ÉRETTSÉGI VIZSGA 2012. május 15. BIOLÓGIA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Упутство
ВишеMatematika horvát nyelven középszint Javítási-értékelési útmutató 1813 ÉRETTSÉGI VIZSGA május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI
Matematika horvát nyelven középszint 83 ÉRETTSÉGI VIZSGA 09. május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Važne informacije
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/2014. година УПУТСТВО ЗА РАД Тест који треба да решиш
ВишеNév:... osztály:... ÉRETTSÉGI VIZSGA május 5. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00 I. Időtartam: 45 perc Pót
ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika
ВишеAzonosító jel: ÉRETTSÉGI VIZSGA május 9. MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA május 9. 8:00 Időtartam: 240 perc Pótlapok
ÉRETTSÉGI VIZSGA 2017. május 9. MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2017. május 9. 8:00 Időtartam: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli
ВишеMicrosoft Word - Matematika_emelt_irasbeli_0802_szerbH.doc
ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
ВишеMicrosoft Word - mat_szerb_kz_1flap.doc
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA СРЕДЊИ СТЕПЕН I. 45 минута Време за решавање задатака је 45 минута, након његовог истека треба завршити са радом. Редослед решавања задатака је произвољан. Приликом
ВишеMatematika horvát nyelven középszint Javítási-értékelési útmutató 1712 ÉRETTSÉGI VIZSGA május 8. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI
Matematika horvát nyelven középszint 171 ÉRETTSÉGI VIZSGA 018. május 8. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Važne informacije
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА О
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2015/
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2015/2016. година УПУТСТВО ЗА РАД Тест који треба да решиш
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА
ВишеFizika szerb nyelven középszint Javítási-értékelési útmutató 1511 ÉRETTSÉGI VIZSGA május 17. FIZIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI
Fizika szerb nyelven középszint 1511 ÉRETTSÉGI VIZSGA 016. május 17. FIZIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Матурски радови
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година
ВишеNév:... osztály:... ÉRETTSÉGI VIZSGA május 8. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00 I. Időtartam: 57 perc Pót
ÉRETTSÉGI VIZSGA 2018. május 8. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2018. május 8. 8:00 I. Időtartam: 57 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli
ВишеМатематика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје
1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 01/01. година ТЕСТ МАТЕМАТИКА
ВишеШифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП
Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година СЕДМИ РАЗРЕД ТЕСТ СПОСОБНОСТИ
ВишеМатематика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }
1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година
ВишеFizika_emelt_irasbeli_javitasi_1311_szerb
Fizika szerb nyelven emelt szint 3 ÉRETTSÉGI VIZSGA 03. május 6. FIZIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Писмене задтаке
ВишеМатематика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О
1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. Одреди број елемената скупова: а) A = {x x N и x < 5} A = { } n(a) = б) B = {x
ВишеИнформатичка одељења Математика Република Србија Министарство просвете, науке и технолошког развоја Завод за вредновање квалитета образовања и васпита
Република Србија Министарство просвете, науке и технолошког развоја Завод за вредновање квалитета образовања и васпитања ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ
ВишеMicrosoft Word - Biologia_kozep_irasbeli_javitasi_0811_szerb.doc
Biológia szerb nyelven középszint 0811 ÉRETTSÉGI VIZSGA 2011. május 11. BIOLÓGIA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Упутство
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 018/019. година МАТЕМАТИКА
ВишеRepublika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA ZAVRŠNI ISPIT NA KRAJU OSNOVN
Republika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školska 2016/2017. godina TEST
ВишеЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА
ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)
ВишеMicrosoft Word - 1_Uputstvo-za-ocenjivanje_ZI-2018_Matematika Jun.doc
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 017/018. година ТЕСТ МАТЕМАТИКА
ВишеBiológia szerb nyelven középszint Javítási-értékelési útmutató 1512 ÉRETTSÉGI VIZSGA május 13. BIOLÓGIA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETT
Biológia szerb nyelven középszint 1512 ÉRETTSÉGI VIZSGA 2015. május 13. BIOLÓGIA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Упутство
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 2018/2019. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД Тест
ВишеMicrosoft Word - Informatika_kozep_gyakorlati_jav_utmut0511_szerb_modos.doc
ÉRETTSÉGI VIZSGA 2005. május 19. INFORMATIKA SZERB NYELVEN ИНФОРМАТИКА KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA МАТУРСКИ ИСПИТ СРЕДЊЕГ СТЕПЕНА A gyakorlati vizsga időtartama: 180 perc Време трајања практичног испита:
ВишеМ А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према свој
М А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према својствима (6; 2 + 4) Природни бројеви до 100 (144; 57
ВишеMicrosoft Word - Biologia_kozep_irasbeli_javitasi_0912_szerb.doc
Biológia szerb nyelven középszint 0912 ÉRETTSÉGI VIZSGA 2010. május 12. BIOLÓGIA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Упутство
ВишеBiológia angol nyelven középszint Javítási-értékelési útmutató 1813 ÉRETTSÉGI VIZSGA május 15. BIOLÓGIA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSG
Biológia angol nyelven középszint 1813 ÉRETTSÉGI VIZSGA 2018. május 15. BIOLÓGIA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Упутство за вредновање
ВишеPRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti
PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00
Вишеuntitled
ОСНА СИМЕТРИЈА 1. Заокружи слово испред цртежа на коме су приказане две фигуре које су осносиметричне у односу на одговарајућу праву. 2. Нацртај фигуре које су осносиметричне датим фигурама у односу на
ВишеMicrosoft Word - inicijalni test 2013 za sajt
ИНИЦИЈАЛНИ ТЕСТ ИЗ МАТЕМАТИКЕ ЗА УЧЕНИКЕ ПРВОГ РАЗРЕДА ЗЕМУНСКЕ ГИМНАЗИЈЕ шк. 13 14. Циљ Иницијални тест за ученике првог разреда Земунске гимназије организован је с циљем увида у предзнање ученика, тј.
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година
ВишеMicrosoft Word - Matematika_kozep_irasbeli_1011_horvat.doc
ÉRETTSÉGI VIZSGA 2010. október 19. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 19. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
ВишеŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI
ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK
ВишеМинистарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ Општинско такмичење из математике ученика основних школа III
25.02.2017 III разред 1. Број ногу Периних паса је за 24 већи од броја њихових глава. Колико паса има Пера? 2. На излет су кренула три аутобуса у којима је било укупно 150 ученика. На првом одмору је из
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година ТЕС
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 017/018. година ТЕСТ ФИЗИКА ПРИЈЕМНИ ИСПИТ ЗА УПИС УЧЕНИКА СА ПОСЕБНИМ СПОСОБНОСТИМА
ВишеRepublika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školska
Republik Srbij MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školsk 2017/2018. godin TEST MATEMATIKA UPUTSTVO ZA RAD Test
ВишеШифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП
Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ
ВишеPEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla
PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla, 3. mart/ožujak 019. godine Prirodno-matematički fakultet
ВишеТалесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да
Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и
ВишеVizuális kultúra horvát nyelven középszint Javítási-értékelési útmutató 1711 ÉRETTSÉGI VIZSGA május 22. VIZUÁLIS KULTURA HORVÁT NYELVEN KÖZÉPSZI
Vizuális kultúra horvát nyelven középszint 1711 ÉRETTSÉGI VIZSGA 2017. május 22. VIZUÁLIS KULTURA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
ВишеАлгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (
Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)
ВишеTrougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa
Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa tri nekolinearne tačke. Trougao je geometrijski objekat
Више8. razred kriteriji pravi
KRITERIJI OCJENJIVANJA MATEMATIKA 8. RAZRED Učenik će iz nastavnog predmeta matematike biti ocjenjivan usmeno i pismeno. Pismeno ocjenjivanje: U osmom razredu piše se šest ispita znanja i bodovni prag
ВишеZadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine
Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto
Више1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1
1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)
ВишеЕКОНОМСКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У ПРИШТИНИ КОСОВСКА МИТРОВИЦА
МАТЕМАТИКА ЗАДАЦИ ЗА ПРИЈЕМНИ ИСПИТ 1. Израчунати вредност израза: а) ; б). 2. Израчунати вредност израза:. 3. Израчунати вредност израза:. 4. Израчунати вредност израза: ако је. 5. Израчунати вредност
ВишеИвана Јухас MATEMATИKA 2а Уџбеник за други разред основне школе
Ивана Јухас MATEMATИKA 2а Уџбеник за други разред основне школе Ивана Јухас MATEMATИKA 2а Уџбеник за други разред основне школе ГЛАВНИ УРЕДНИК Проф. др Бошко Влаховић ОДГОВОРНA УРЕДНИЦА Доц. др Наташа
ВишеMAT-KOL (Banja Luka) Matematički kolokvijum XIV(3)(2008), DEVET RJEŠENJA JEDNOG ZADATKA IZ GEOMETRIJE Dr Šefket Arslanagić 1 i Alija Miminagić 2
T-KOL (anja Luka) atematički kolokvijum XIV()(008), 1-1 DEVET RJEŠENJ JEDNOG ZDTK IZ GEOETRIJE Dr Šefket rslanagić 1 i lija iminagić Samostalno rješavanje malog broja teških problema je, bez sumnje, od
Више7. а) 3 4 ( ) ; б) ( ) ( 2 5 ) ; в) ( ) 3 16 ; г) ( ). 8. а) ( г) ) ( ) ; б)
7. а) ( 5 + 5 ) ; б) ( 5 8 5 6 ) ( 2 5 ) ; в) ( 9 + ) 6 ; г) 5 ( 2 + 2 29 ). 8. а) ( г) 2 2 + ) ( + 2 ) ; б) 2 ( + 2 ) + 2 ; в) ( 0 + 5 ) ( 2 ( 7 6 )) ; 7 2 + ( + ( 8 6 ( 2 ) 2 )) ; д) ( 2 5 ( 2 + 7 0
ВишеMicrosoft Word - Biologia_kozep_irasbeli_javitasi_0802_szerbH.doc
Biológia szerb nyelven középszint 0802 ÉRETTSÉGI VIZSGA 2008. május 16. BIOLÓGIA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Упутство
ВишеPLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)
PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove
Више1 Ministarstvo za obrazovanje, nauku i mlade KS ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2016/2017. GODINI MATEMATIKA Stručni tim za matematiku:
1 Ministarstvo za obrazovanje, nauku i mlade KS ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2016/2017. GODINI MATEMATIKA Stručni tim za matematiku: Prof. dr. Senada Kalabušić Dragana Paralović, prof.
ВишеFOR_Matema_Srednja
Јован Бојиновић НЕОПХОДНЕ ФОРМУЛЕ ИЗ МАТЕМАТИКЕ ЗА ПОЛАГАЊЕ ПРИЈЕМНОГ ИСПИТА ЗА ФАКУЛТЕТЕ Формуле из планиметрије и стереометрије Страна: ПОВРШИНА ТРОУГЛА. Површина троугла се може израчунати и Хероновим
ВишеИзвештај о резултатима завршног испита на крају основног образовања и васпитања у школској 2013/2014. години
Извештај о резултатима завршног испита на крају основног образовања и васпитања у школској 2013/2014. години Садржај Општи подаци... 3 1. Анализа 1... 4 2. Анализа 2... 4 3. Анализа 3... 5 4. Анализа 4...
ВишеVerovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je
Verovatnoća - kolokvijum 17. decembar 2016. 1. Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je 0.8. Ako je ispit težak, verovatnoća da se prvo pitanje
ВишеAgencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 58.ŠKOLSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA - 5. razred Za
Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 58.ŠKOLSKO NATJECANJE MLADIH TEHNIČARA 206. PISANA PROVJERA ZNANJA - 5. razred Zaporka učenika: (peteroznamenkasti broj i riječ) Ukupan
ВишеPRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste
PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, 5.06.019. godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekstenzija se najčešće koristi za tekstualne datoteke? a)
ВишеMy_P_Trigo_Zbir_Free
Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу
ВишеVISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E
VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA PO@AREVAC MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, ELEKTROTEHNIKA, MA[INSTVO PO@AREVAC 007 OBAVEZNO PRO^ITATI!
ВишеОБАВЕШТЕЊЕ ЗА УЧЕНИКЕ VIII РАЗРЕДА Пријављивање кандидата за прјемни испит (детаљније обавештење у средњим школама које спроводе пријемни испит) 12 15
ОБАВЕШТЕЊЕ ЗА УЧЕНИКЕ VIII РАЗРЕДА Пријављивање кандидата за прјемни испит (детаљније обавештење у средњим школама које спроводе пријемни испит) 12 15. маја Од 09 14 часова. Полагање пријемног испита за
ВишеOSNOVNA ŠKOLA, VI RAZRED MATEMATIKA
OSNOVNA ŠKOLA, VI RAZRED MATEMATIKA UPUTSTVO ZA RAD Drage učenice i učenici, Čestitamo! Uspjeli ste da dođete na državno takmičenje iz matematike i samim tim ste već napravili veliki uspjeh Zato zadatke
ВишеDržavna matura 2010./2011. i prijave za upis na studijske programe
Prijave ispita državne mature 2018./2019. i prijave za upis na studijske programe Ispitna koordinatorica: Gordana Erić, dipl. ing. I. tehnička škola Tesla www.tesla.hr Što su ispiti državne mature? Postoje
Вишеkolokvijum_resenja.dvi
Геометриjа 2 колоквиjум 2019. Димитриjе Шпадиjер 25. jануар 2019. 1. Важи H(,;K,L) ако постоjи права p коjа не садржи тачку и сече праве,,k,l у неким тачкама X,Y,M,N таквим да важи H(X,Y;M,N). Права сече
ВишеTeorija skupova - blog.sake.ba
Uvod Matematika je jedan od najomraženijih predmeta kod većine učenika S pravom, dakako! Zapitajmo se šta je uzrok tome? Da li je matematika zaista toliko teška, komplikovana? Odgovor je jednostavan, naravno
ВишеMAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S
MAT B MATEMATIKA osnovna razina MAT38.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.
ВишеТачка 1
Буџет Суфинансирање Самофинансирање Страни држављани Ванредни Универзитет у Источном Сарајеву Електротехнички факултет Вука Караџића, 30, 71123 Источно Сарајево kontakt@etf.ues.rs.ba +387 57 342 788 www.etf.ues..rs.ba
ВишеInformatika szerb nyelven emelt szint Javítási-értékelési útmutató 1312 ÉRETTSÉGI VIZSGA május 13. INFORMATIKA SZERB NYELVEN EMELT SZINTŰ GYAKOR
Informatika szerb nyelven emelt szint 1312 ÉRETTSÉGI VIZSGA 2014. május 13. INFORMATIKA SZERB NYELVEN EMELT SZINTŰ GYAKORLATI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
ВишеРационални Бројеви Скуп рационалних бројева 1. Из скупа { 3 4, 2, 4, 11, 0, , 1 5, 12 3 } издвој подскуп: а) природних бројева; б) целих броје
Рационални Бројеви Скуп рационалних бројева. Из скупа {,,,, 0,,, } издвој подскуп: а) природних бројева; б) целих бројева; в) ненегативних рационалних бројева; г) негативних рационалних бројева.. Запиши
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
ВишеREPUBLIKA SRPSKA
РЕПУБЛИКА СРПСКА МИНИСТАРСТВО ПРОСВЈЕТЕ И КУЛТУРЕ К О Н К У Р С ЗА УПИС УЧЕНИКА У ПРВИ РАЗРЕД СРЕДЊИХ ШКОЛА РЕПУБЛИКЕ СРПСКЕ У ШКОЛСКОЈ 2018/2019. ГОДИНИ Бања Лука, мај 2018. године На основу члана 45.
ВишеAgencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 57. ŽUPANIJSKO/KLUPSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA 5.
Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 57. ŽUPANIJSKO/KLUPSKO NATJECANJE MLADIH TEHNIČARA 205. PISANA PROVJERA ZNANJA 5. RAZRED Zaporka učenika: Ukupan zbroj bodova pisanog
ВишеРепублички педагошки завод Бања Лука Стручни савјетник за машинску групу предмета и практичну наставу Датум: године Тема: Елементи и начин
Републички педагошки завод Бања Лука Стручни савјетник за машинску групу предмета и практичну наставу Датум:.06.2009. године Тема: Елементи и начин вредновања графичког рада из раванских носачи 1 Увод:
ВишеOkruzno2007ZASTAMPU.dvi
4. RAZRED 1. Koliko ima trouglova na slici? Navesti te trouglove. D E F C A 2. Na koliko naqina Voja, Rade i Zoran mogu da podele 7 jednakih klikera, tako da svaki od Φih dobije bar jedan kliker? 3. TravΦak
ВишеMicrosoft Word - Algebra i funkcije- napredni nivo doc
Algebra i funkcije napredni nivo 01. Nenegativna znači da je vrednost izraza pozitivna ili je jednaka 0. ( 1) ( 1)( 1) 0 razlika kvadrata (( x) + x 1+ 1 ) (( x) 1 ) 0 ( + + 1) ( 1) 0 x x+ x x+ x x x +
ВишеMicrosoft Word - vodic B - konacna
VODIČ B za škole za srednje stručno obrazovanje i obuku školska 2015./2016. godina MATEMATIKA Predmetna komisija: Dina Kamber Maja Hrbat Vernesa Mujačić Mirsad Dumanjić Sadržaj Uvod... 1 Obrazovni ishodi
ВишеЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д)
ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = х; б) у = 4х; в) у = х 7; г) у = 5 x; д) у = 5x ; ђ) у = х + х; е) у = x + 5; ж) у = 5 x ; з) у
ВишеVizuális kultúra szerb nyelven középszint Javítási-értékelési útmutató 1811 ÉRETTSÉGI VIZSGA május 20. VIZUÁLIS KULTÚRA SZERB NYELVEN KÖZÉPSZINT
Vizuális kultúra szerb nyelven középszint 1811 ÉRETTSÉGI VIZSGA 2019. május 20. VIZUÁLIS KULTÚRA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
Више