Sveučilište u Zagrebu Prirodoslovno matematički fakultet Matematički odjel Vedran Krčadinac Konstrukcija i klasifikacija konačnih struktura pomoću rač
|
|
- Hilda Avšič
- пре 5 година
- Прикази:
Транскрипт
1 Sveučilište u Zagrebu Prirodoslovno matematički fakultet Matematički odjel Vedran Krčadinac Konstrukcija i klasifikacija konačnih struktura pomoću računala Disertacija Zagreb, ožujak 2004.
2 Sadržaj 1 Potpuna klasifikacija Problem klasifikacije Provjera izomorfnosti i računanje pune grupe automorfizama Algoritmi za klasifikaciju Klasifikacija nekih linearnih prostora Klasifikacija frekvencijskih kvadrata Prebrojavanje frekvencijskih kvadrata Klasifikacija orbitnih matrica Klasifikacija uz dodatne pretpostavke Steinerovi 2-dizajni i njihovi automorfizmi Dizajni S(2, 4, 28) s netrivijalnim automorfizmima Neki novi S(2, 4, 37) dizajni Još neki rezultati o Steinerovim 2-dizajnima TSC prostori Nepotpuna potraga Egzistencija blok dizajna kao optimizacijski problem Tabu search algoritam za blok dizajne i konfiguracije Dizajni S(2, k, 2k 2 2k + 1) kao TSC prostori Dodatak 79 Literatura 105
3 1 Potpuna klasifikacija 1.1 Problem klasifikacije Neka je X konačan skup, a G grupa koja djeluje na X. Bavimo se problemom algoritamskog odredivanja skupa predstavnika tog djelovanja, tj. skupa koji sadrži točno jedan element iz svake orbite. Elemente skupa X zovemo objekti, relaciju ekvivalencije induciranu djelovanjem grupe G zovemo izomorfizam i označavamo =, a stabilizator objekta A X zovemo puna grupa automorfizama i označavamo Aut A. Navodimo tri vrste konačnih struktura koje se mogu opisati na taj način. Definicija 1.1 Incidencijska struktura je trojka (P, L, I), koja se sastoji od skupa P čije elemente zovemo točke, skupa L čije elemente zovemo pravci ili blokovi i relacije I P L koju zovemo incidencija. U prvom slučaju objekti su konačne incidencijske strukture s danim skupom točaka i pravaca. Grupa G je direktan produkt grupa permutacija skupova P i L uz prirodno djelovanje na relacijama incidencije. Definicija 1.2 Neka je N n = {1, 2,..., n}. Matrica dimenzija m n nad skupom S je preslikavanje iz N m N n u S. U drugom slučaju objekti su matrice dimenzija m n nad konačnim skupom. Direktan produkt simetričnih grupa G = S m S n djeluje na matrice permutiranjem redaka i stupaca. Za neke specijalne matrice od interesa su druga djelovanja, o čemu će biti govora kasnije. Definicija 1.3 Graf G = (V, B) sastoji se od konačnog skupa V čije elemente zovemo vrhovi i skupa B koji sadrži dvočlane podskupove od V. Podskupove sadržane u B zovemo bridovi. U trećem slučaju objekti su grafovi s danim skupom vrhova, a G je grupa permutacija od V uz odgovarajuće djelovanje na bridovima. Pojmovi iz prethodne tri definicije vrlo su općeniti i zapravo nas zanimaju samo specijalne klase takvih objekata. Bez dodatnih zahtjeva stupanj općenitosti je podjednak. Grafovi su specijalan slučaj incidencijskih struktura, ako vrhove identificiramo s točkama, a bridove s pravcima. Incidencijske strukture lako je reprezentirati matricama (Definicija 1.4). Matrice u idućoj cjelini reprezentiramo grafovima pomoću kojih ispitujemo izomorfnosti i računamo pune grupe automorfizama. 1
4 Definicija 1.4 Neka je S konačna incidencijska struktura sa skupom točaka P = {P 1,..., P m } i skupom pravaca L = {l 1,..., l n }. Incidencijska matrica strukture S je m n matrica A = [a ij ] definirana sa { 1, ako je Pi I l a ij = j 0, inače Slijedi opis konačnih struktura kojima se bavimo u ovoj disertaciji. Definicija 1.5 Blok dizajn ili 2-dizajn s parametrima (v, k, λ) je incidencijska struktura s v točaka, čiji blokovi sadrže k točaka i u kojoj su svake dvije točke sadržane u λ blokova. U disertaciji je izloženo nekoliko novih rezultata o egzistenciji 2-dizajna, uglavnom Steinerovih (s parametrom λ = 1). Kratak pregled poznatih rezultata o Steinerovim 2-dizajnima i njihove povijesti dan je na početku drugog poglavlja, a opsežan pregled rezultata o dizajnima nalazi se u monografijama [5], [6] i [24]. Definicija 1.6 Konfiguracija s parametrima (v r, b k ) je incidencijska struktura s v točaka i b pravaca, u kojoj svaka točka leži na r pravaca, svaki pravac sadrži k točaka i svake dvije točke su spojene najviše jednim pravcem. Ako je ukupan broj točaka jednak ukupnom broju pravaca, konfiguracija se naziva simetričnom i parametri bilježe (v k ). Definicija 1.7 Linearni prostor je konačna incidencijska struktura čije su svake dvije točke spojene jedinstvenim pravcem, a svaki pravac sadrži bar dvije točke. Pregled teorije konačnih linearnih prostora dan je u knjizi [3]. Rezultati izloženi u disertaciji tiču se jedne specijalne klase linearnih prostora, uvedene u radu s J.Šiftarom [61]. Definicija 1.8 Za linearni prostor kažemo da je TSC prostor s parametrima (k, l), ukratko TSC (k, l), ako zadovoljava: (1) skup pravaca može se rastaviti na dva disjunktna podskupa tako da pravci iz prvog podskupa sadrže k točaka, a pravci iz drugog podskupa sadrže l točaka; (2) kroz svaku točku prolazi k pravaca iz prvog podskupa i l pravaca iz drugog podskupa. 2
5 Kratica TSC dolazi od engleskog twofold symmetric configuration, jer se zapravo radi o linearnim prostorima sastavljenim od dvije simetrične konfiguracije. U ovom poglavlju potpuno su klasificirani TSC(3, 4) prostori, a niz drugih rezultata o TSC prostorima izložen je u cjelini 2.5. Važno je naglasiti da su definirane klase incidencijskih struktura invarijantne na izomorfizam, tj. da je svaka incidencijska struktura izomorfna (v, k, λ) blok dizajnu takoder blok dizajn s istim parametrima, i analogno za linearne prostore, konfiguracije i TSC prostore. To nam omogućuje ograničavanje klasifikacije samo na onu vrstu incidencijskih struktura koje nas zanimaju. Slijedi opis matrica na koje primjenjujemo algoritme za klasifikaciju. Definicija 1.9 Latinski kvadrat reda n je matrica dimenzija n n nad N n u kojoj se svaki od brojeva 1, 2,..., n javlja točno jednom u svakom retku i stupcu. Definicija 1.10 Frekvencijski kvadrat reda n s frekvencijskim vektorom λ = (λ 1,..., λ s ) je matrica dimenzija n n nad N s u kojoj se broj i javlja točno λ i puta u svakom retku i stupcu, za i = 1,..., s. Pojam frekvencijskog kvadrata je generalizacija pojma latinskog kvadrata. Monografije o latinskim kvadratima i njihovim generalizacijama su [26] i [27], a elementarniji uvod dan je u knjizi [46]. U disertaciji je izloženo nekoliko novih rezultata o latinskim i frekvencijskim kvadratima reda 7 i 8. Osim već uvedenog pojma izomorfizma, na skupu svih frekvencijskih kvadrata s danim frekvencijskim vektorom djeluje grupa G = S n S n K. Prva dva faktora djeluju permutiranjem redaka i stupaca, a K je podgrupa svih permutacija iz S s koje ostavljaju frekvencijski vektor invarijantnim i djeluje permutiranjem simbola. Pripadna relacija ekvivalencije naziva se izotopija. Na skupu latinskih kvadrata reda n dodatno djeluje grupa S 3 konjugiranjem, tj. zamjenom uloge redaka, stupaca i simbola. Semidirektan produkt grupe izotopija i grupe konjugacija inducira relaciju ekvivalencije koju zovemo paratopija, a klase ekvivalencije glavne klase. Osim toga latinski kvadrati predstavljaju tablice množenja algebarskih struktura poznatih kao kvazigrupe (uvod u teoriju kvazigrupa dan je u knjizi [100]). Od interesa je relacija ekvivalencije koja odgovara izomorfizmu kvazigrupa (u algebarskom smislu). Radi se o relaciji induciranoj djelovanjem podgrupe svih izotopija oblika (ϕ, ϕ, ϕ) S n S n S n. Naglašavamo da se algebarski izomorfizam latinskih kvadrata ne podudara s pojmom izomorfizma uvedenim nakon Definicije 1.2. Izomorfizam u tom smislu induciran je djelovanjem podgrupe svih izotopija oblika (ϕ, ψ, id), koje se u teoriji kvazigrupa nazivaju glavne izotopije. 3
6 Frekvencijski, a naročito latinski kvadrati su objekti zanimljivi sami po sebi i imaju brojne kombinatorne i statističke primjene. Iduća vrsta matrica manje je značajna, a treba nam za konstrukciju blok dizajna sa zadanom grupom automorfizama. Definicija 1.11 Orbitna matrica za (v, k, λ) s marginalnim vektorima ν = (ν 1,..., ν m ) i β = (β 1,..., β n ) je svaka m n matrica A = [a ij ] nad N {0} koja zadovoljava: (1) 0 a ij β j, za 1 i m, 1 j n; (2) (3) (4) n a ij = r, za 1 i m; j=1 m i=1 n j=1 ν i β j a ij = k, za 1 j n; { ν i λνi, ako je i i a ij a i β j = j λ(ν i 1) + r, ako je i = i, za 1 i, i m. Pritom treba vrijediti ν ν m = v, β β n = b, r = λ (v 1) k 1 i b = vr k. Na skupu svih orbitnih matrica djeluje direktan produkt podgrupa od S m i S n koje ostavljaju marginalne vektore invarijantnim. Suženje grupe G u odnosu na grupu uvedenu nakon Definicije 1.2 treba nam da bi svojstva iz definicije orbitnih matrica ostala sačuvana pri izomorfizmu. U poglavlju 5.1 magistarskog rada [55] objašnjena je veza orbitnih matrica i automorfizama blok dizajna. U disertaciji se ne bavimo direktno klasifikacijom grafova. Oni nam trebaju radi izračunavanja punih grupa automorfizama i provjere izomorfnosti, za što je takoder potrebna dodatna struktura. Definicija 1.12 Bojanje grafa G = (V, B) je svaka funkcija b : V N sa skupa vrhova u skup prirodnih brojeva. Obojani graf sastoji se od grafa i jednog njegovog bojanja. Izomorfizam obojanih grafova G = (V, B, b) i G = (V, B, b ) je bijekcija ϕ : V V koja čuva bridove i bojanje, tj. ima svojstva ϕ(b) = B i b = b ϕ. 4
7 1.2 Provjera izomorfnosti i računanje pune grupe automorfizama U ovoj cjelini bavimo se problemom provjere izomorfnosti danih objekata A, B i odredivanja pune grupe automorfizama Aut A. To nije tema disertacije, ali se provjera izomorfnosti javlja kao osnovni korak u algoritmima za klasifikaciju i moramo je riješiti u sklopu njihove implementacije. Koristimo dva gotova rješenja, zasnovana na pojmu kanonskog preslikavanja. Definicija 1.13 Kanonsko preslikavanje je svaka funkcija c : X X sa svojstvima c(a) = A i c(ga) = c(a), za sve A X i g G. Provjera izomorfnosti objekata A, B svodi se na usporedivanje njihovih kanonskih slika c(a), c(b) [55, Propozicija 3.5]. Programi koje koristimo izračunavaju sliku danog objekta A X pod odredenim kanonskim preslikavanjem i odreduju punu grupu automorfizama Aut A. Prvi program, razvijen u sklopu magistarskog rada [55], radi s matricama nad N k {0}. Realizira kanonsko preslikavanje koje matrici A X pridružuje maksimalni element pripadne orbite {ga g G}, u smislu leksikografskog uredaja [55, Definicija 3.7]. Algoritam je opisan u poglavlju 3.1 magistarskog rada i dokazana je njegova valjanost. Program takoder izračunava red pune grupe automorfizama i pamti sve njezine elemente, što mu je glavni nedostatak. Za matrice s velikim grupama automorfizama i za jako pravilne matrice (kao što su incidencijske matrice dizajna) program je relativno spor i treba puno memorije. Koristimo ga za klasifikaciju orbitnih matrica, u obliku prilagodenom djelovanju odgovarajuće grupe G (permutacije redaka i stupaca koje čuvaju marginalne vektore). Uz neke preinake koristimo ga i za klasifikaciju frekvencijskih kvadrata obzirom na izotopiju. Drugi program je nauty B.D.McKay-a [70]. Radi se o izuzetno efikasnom programu za računanje kanonskih predstavnika i punih grupa automorfizama obojanih grafova. Prednost je u tome što ne pamti cijelu grupu Aut A, nego samo jedan skup generatora. Program može obraditi vrlo pravilne grafove s velikim brojem vrhova i ogromnim grupama automorfizama. Nedostatak programa nauty je što nije jasno koje kanonsko preslikavanje realizira (ono ovisi o računalu i kompajleru koji se koristi). Da bismo mogli primjenjivati nauty na incidencijske strukture i matrice, treba ih reprezentirati grafovima. Točnije, incidencijskim strukturama i matricama pridružujemo obojane grafove tako da ostanu sačuvani pojmovi izomorfnosti i pune grupe automorfizama. U istom su odnosu incidencijska struktura i njezina incidencijska matrica. Dvije incidencijske strukture su izomorfne ako i samo ako su im incidencijske matrice izomorfne, a puna 5
8 grupa automorfizama incidencijske strukture izomorfna je punoj grupi automorfizama njezine incidencijske matrice. Incidencijske strukture mogu se na sljedeći način reprezentirati obojanim grafovima. Definicija 1.14 Neka je S = (P, L, I) incidencijska struktura. Definiramo obojani graf G(S) sa skupom vrhova V = P L (disjunktna unija), skupom bridova B = {P l P P, l L, P I l } i bojanjem b(p) = 1, b(l) = 2. Propozicija 1.15 Skup svih izomorfizama s incidencijske strukture S na incidencijsku strukturu S je u bijektivnom odnosu sa skupom svih izomorfizama s grafa G(S) na graf G(S ). Dokaz. Izomorfizam sa S u S je par (α, β), pri čemu su α : P P i β : L L bijekcije koje čuvaju incidenciju. Definiramo funkciju φ : V V, { α(v), za v P φ(v) = β(v), za v L Lako se provjeri da je φ izomorfizam obojanih grafova G(S) i G(S ). Pridruživanje (α, β) φ je bijekcija jer ima inverznu funkciju. Izomorfizam φ čuva bojanje i zato preslikava P i L na sebe, pa možemo definirati restrikcije α = φ P i β = φ L. Korolar 1.16 Incidencijske strukture S i S su izomorfne ako i samo ako su pridruženi grafovi G(S) i G(S ) izomorfni. Korolar 1.17 Puna grupa automorfizama incidencijske strukture S izomorfna je punoj grupi automorfizama pridruženog grafa G(S). Dokaz. U slučaju S = S pridruživanje (α, β) φ je izomorfizam grupa, jer kompoziciji automorfizama pridružuje kompoziciju njihovih slika. Graf iz Definicije 1.14 koristimo u programima incfilter.c i aut.c za ispitivanje izomorfnost i računanje pune grupe automorfizama incidencijskih struktura (točnije, njihovih incidencijskih matrica). Program nauty takoder primjenjujemo na frekvencijske kvadrate s relacijom izotopije. Reprezentiramo ih obojanim grafovima na sljedeći način. Definicija 1.18 Neka je A = [a ij ] frekvencijski kvadrat reda n s frekvencijskim vektorom λ = (λ 1,..., λ s ). Neka su R = {r 1,..., r n }, C = {c 1,..., c n }, S = {1,..., s} i M = {m ij i, j = 1,..., n} medusobno disjunktni skupovi. Definiramo graf G(A) sa skupom vrhova V = R C S M, skupom bridova B = n i,j=1 {r i m ij, c j m ij, a ij m ij } i bojanjem b(r) = 1, b(c) = 2, b(s) = 3, b(m) = 4. 6
9 Propozicija 1.19 Skup svih izotopija s frekvencijskog kvadrata A na frekvencijski kvadrat B je u bijektivnom odnosu sa skupom svih izomorfizama s grafa G(A) na graf G(B). Dokaz. Neka je (ϕ, ψ, σ) S n S n K izotopija kvadrata A = [a ij ] na kvadrat B = [b ij ]. To znači da je σ(a ϕ 1 (i)ψ 1 (j)) = b ij, za i, j = 1,..., n. Definiramo funkciju φ : V V sa φ(r i ) = r ϕ(i), φ(c j ) = c ψ(j), φ(k) = σ(k) i φ(m ij ) = m ϕ(i)ψ(j), za i, j = 1,..., n, k = 1,..., s. Ona je očito bijekcija i čuva bojanje. Skupove bridova {r i m ij i, j = 1,..., n} i {c i m ij i, j = 1,..., n} funkcija φ preslikava na same sebe, a skup {a ij m ij i, j = 1,..., n} preslikava na {σ(a ij )m ϕ(i)ψ(j) i, j = 1,..., n} = {σ(a ϕ 1 (i)ψ 1 (j))m ij i, j = 1,..., n} = {b ij m ij i, j = 1,..., n}. Dakle, φ je izomorfizam obojanih grafova G(A) i G(B). Pokazat ćemo da je pridruživanje (ϕ, ψ, σ) φ bijekcija tako da definiramo inverznu funkciju. Svaki izomorfizam obojanih grafova φ ima svojstva φ(r) = R, φ(c) = C, φ(s) = S i φ(m) = M. Neka su ϕ, ψ S n i σ S s permutacije za koje je φ(r i ) = r ϕ(i), φ(c j ) = c ψ(j) i φ(k) = σ(k). Izomorfizam φ preslikava bridove r i m ij, c j m ij na bridove r ϕ(i) φ(m ij ), c ψ(j) φ(m ij ). Zaključujemo da je φ(m ij ) = m ϕ(i)ψ(j). Skup bridova {a ij m ij i, j = 1,..., n} preslikava se na {σ(a ij )m ϕ(i)ψ(j) i, j = 1,..., n} = {σ(a ϕ 1 (i)ψ 1 (j))m ij i, j = 1,..., n}. Taj skup je jednak {b ij m ij i, j = 1,..., n} jer je φ izomorfizam grafova, iz čega slijedi σ(a ϕ 1 (i)ψ 1 (j)) = b ij, za i, j = 1,..., n. Iz toga takoder slijedi da permutacija σ čuva frekvencijski vektor λ = (λ 1,..., λ s ), jer su A i B oba kvadrati iz F (n; λ). Dakle, (ϕ, ψ, σ) je izotopija kvadrata A na kvadrat B. Korolar 1.20 Frekvencijski kvadrati A i B su izotopni ako i samo ako su pridruženi grafovi G(A) i G(B) izomorfni. Korolar 1.21 Puna grupa autotopija frekvencijskog kvadrata A izomorfna je punoj grupi automorfizama pridruženog grafa G(A). Dokaz. U slučaju A = B pridruživanje (ϕ, ψ, σ) φ preslikava kompoziciju izotopija u kompoziciju njihovih slika. Vidimo da se radi o izomorfizmu grupe autotopija frekvencijskog kvadrata A i grupe automorfizama grafa G(A). Graf iz Definicije 1.18 koristimo u programima isofilter.c i fsaut.c, koji ispituju izotopnost i računaju pune grupe autotopija frekvencijskih kvadrata. Jednostavnim modifikacijama Definicije 1.18 možemo postići da graf G(A) reprezentira druge relacije ekvivalencije na matricama. Na primjer, ako 7
10 elemente skupa S obojimo različito, graf reprezentira relaciju induciranu permutacijama redaka i stupaca ( glavnim izotopijama ). Paratopiju latinskih kvadrata dobivamo ako vrhove u R, C i S obojimo jednako, a izomorfizam ako na graf iz Definicije 1.18 dodamo bridove n i=1{i r i, i c i, r i c i }. Na kraju navodimo nekoliko referenci o algoritmima za ispitivanje izomorfnosti i računanje punih grupa automorfizama konačnih struktura: W.Kocay [52], D.L.Kreher, D.R.Stinson [62, poglavlje 7], J.S.Leon [64] i [65], B.D.McKay [69] i R.C.Read, D.G.Corneil [86]. 1.3 Algoritmi za klasifikaciju Funkciju koja iz skupa S X izbacuje izomorfne objekte zovemo filtar. Definicija 1.22 Za funkciju f : 2 X 2 X kažemo da je filtar ako ima svojstva (1) f(s) S, (2) objekti iz f(s) medusobno su neizomorfni i (3) svaki objekt iz S izomorfan je nekom iz f(s), za sve S X. Jedna takva funkcija može se realizirati pomoću kanonskog preslikavanja. Algoritam je opisan u magistarskom radu [55, Algoritam 3.16] i implementiran za incidencijske matrice programom incfilter.c, a za frekvencijske kvadrate s relacijom izotopije programom isofilter.c. Naivan pristup problemu klasifikacije bila bi primjena filtra na cijeli skup X. U praksi to ne dolazi u obzir, jer X ima previše elemenata. Na primjer, ukupan broj incidencijskih matrica TSC(3, 4) prostora, klasificiranih u Primjeru 1.36, veći je od (to je izračunato na temelju podataka u Tablici 9). Osnovna ideja algoritama za klasifikaciju je postepeno izgradivanje objekata, proširivanjem neizomorfnih parcijalnih objekata. Incidencijske strukture izgraduju se dodavanjem točaka ili pravaca, matrice dodavanjem redaka ili stupaca, a grafovi dodavanjem vrhova ili bridova. Za općenit opis postupka potrebno je skup X organizirati u stablo. Neka je O X istaknuti objekt, kojeg zovemo nulobjekt, i p : X X nilpotentna funkcija (takva da za neki n N vrijedi p n (X) = O). Funkcija p definira stablo sa skupom vrhova X, pridružujući svakom objektu njegovog roditelja. Red objekta A definiran je sa ord A = min{k N 0 p k (A) = O}. Skup svih objekata reda k čini k-ti nivo stabla i označavamo ga X k. Prirodno je takoder zahtijevati da se red elemenata čuva pri djelovanju grupe G. Aksiom 0. Za sve g G i A X vrijedi ord(ga) = ord A. U nastavku podrazumijevamo da je ispunjen Aksiom 0. Za formulaciju prvog algoritma za klasifikaciju, koji se u [85] naziva klasičnim, treba nam filtar f i mogućnost izračunavanja praslike p 1 (S) = {A X p(a) S} (skupu objekata S pridružuje se skup djece objekata iz S). 8
11 Algoritam 1.23 R 0 = {O} za i = 0,..., n 1 radi [ Ri+1 = f(p 1 (R i )) Cilj nam je dokazati da algoritam definira skupove predstavnika za sve nivoe stabla X. Koristimo sljedeći aksiom, koji dodatno uskladuje djelovanje grupe G s funkcijom p. Aksiom 1. Za svaki g G postoji g G takav da za svaki A X vrijedi g p(a) = p( g A). Identificiramo li g G s preslikavanjem A ga, u aksiomu zahtijevamo postojanje proširenja g G za koje ovaj dijagram komutira: X p g X p X g X Neposredna posljedica Aksioma 1 je da izomorfni objekti imaju ekvivalentne skupove djece, u sljedećem smislu. Lema 1.24 Ako su objekti A i B izomorfni, onda za svaki A p 1 (A) postoji B p 1 (B) izomorfan s A. Dokaz. Neka za g G vrijedi B = ga i neka je g G proširenje iz Aksioma 1. Tada za B = ga vrijedi p(b) = p(ga) = g p(a) = ga = B, tj. B p 1 (B). Time je tvrdnja dokazana. Trebat će nam i ova generalizacija Aksioma 1. Lema 1.25 Za svaki g G i k {1,..., n} postoji g G takav da za svaki A X vrijedi g p k (A) = p k ( g A). Dokaz. Indukcijom po k. Za k = 1 dobivamo tvrdnju Aksioma 1. Pretpostavimo da tvrdnja vrijedi za k i neka je g G. Prema Aksiomu 1 postoji g G takav da je g p(b) = p(g B), za svaki B X. Po pretpostavci indukcije za taj g postoji g G takav da je gp k (A) = p k (g A), za svaki A X. Posebno, za B = p k (A) dobivamo g p k+1 (A) = g p(b) = p(g B) = p(g p k (A)) = p k (p(g A)) = p k+1 (g A), za svaki A X. 9
12 Dokaz valjanosti Algoritma 1.23 zasniva se na tvrdnji Leme 1.24, slabijem zahtjevu od Aksioma 1. Propozicija 1.26 Ako vrijedi tvrdnja Leme 1.24, onda je R i definiran Algoritmom 1.23 skup predstavnika za X i, za i = 0,..., n. Dokaz. Objekti u R i medusobno su neizomorfni jer je R i rezultat filtriranja. Vidimo takoder da su objekti u R i reda i, tj. R i X i. Indukcijom po i dokazujemo da je svaki objekt iz X i izomorfan nekom iz R i. Tvrdnja očito vrijedi za i = 0. Pretpostavimo da tvrdnja vrijedi za neki i {0,..., n 1} i neka je A X i+1. Po pretpostavci, za A = p(a) X i postoji B R i izomorfan s A. Zbog Leme 1.24 postoji B p 1 (B) izomorfan s A. Vidimo da je B p 1 (R i ), a R i+1 je dobiven filtriranjem skupa p 1 (R i ). Prema tome, R i+1 sadrži objekt izomorfan s B, dakle i s A. Klasični algoritam definira skupove predstavnika za sve nivoe stabla, što može biti nedostatak. Obično nas zanimaju samo objekti na zadnjem (n-tom) nivou, a parcijalnih objekata ima znatno više. Neki od skupova R 1,..., R n 1 mogu postat preveliki za pohranjivanje na računalu, a da pritom R n nema previše elemenata. Algoritam možemo učiniti efikasnijim prikladnim izborom podskupova Y i X i, i = 0,..., n, za koje je ispunjen sljedeći aksiom. Aksiom 2. Za sve A X n, i = 0,..., n 1 vrijedi: ako je p n i (A) Y i, onda postoji g G takav da je p n i (g A) = p n i (A) i p n i 1 (g A) Y i+1. Algoritam 1.27 R 0 = {O} za i = 0,..., n 1 radi [ Ri+1 = f(p 1 (R i ) Y i+1 ) Razlika u odnosu na Algoritam 1.23 je što ne filtriramo svu djecu objekata iz R i, nego samo onu sadržanu u Y i+1. Na primjer, ograničavamo se na incidencijske matrice nekog posebnog oblika, ili na reducirane frekvencijske pravokutnike (Definicija 1.39). Pomoću ovog algoritma dobivamo samo skup predstavnika za zadnji nivo stabla. Propozicija 1.28 Ako vrijede Aksiomi 1 i 2, onda je R n definiran Algoritmom 1.27 skup predstavnika za X n. 10
13 Dokaz. Očito R n sadrži medusobno neizomorfne objekte reda n, jer je dobiven filtriranjem podskupa od Y n. Dokazat ćemo da za svaki A X n, i {0,..., n} postoji g G takav da je p n i (g A) R i. Posebno, za i = n to znači da je A izomorfan nekom objektu iz R n, pa je R n skup predstavnika za X n. Tvrdnju dokazujemo indukcijom po i. Za i = 0 vrijedi p n i (g A) = p n (g A) = O R 0, za bilo koji g G. Pretpostavimo da za A X n, i {0,..., n 1} postoji g G takav da je p n i (g A) R i i označimo A = g A. Kako je R i Y i, prema Aksiomu 2 postoji g G takav da je p n i (g A ) = p n i (A ) i p n i 1 (g A ) Y i+1. Vidimo da je za A = g A objekt p n i 1 (A ) sadržan u p 1 (R i ) Y i+1, pa je izomorfan nekom objektu B R i+1. Točnije, postoji g G takav da je B = g p n i 1 (A ). Prema Lemi 1.25 za taj g postoji g G takav da je p n i 1 (g A ) = g p n i 1 (A ) = B R i+1, tj. p n i 1 (g g g A) R i+1. Time je dokazano da tvrdnja vrijedi i za i + 1. Glavni nedostatak Algoritama 1.23 i 1.27 je što su zasnovani na filtriranju. Novi objekti usporeduju se sa svim do tada zapamćenim objektima, pa algoritam radi sve sporije što su skupovi R i veći. Osim toga potrebno je medurezultate (skupove R 1,..., R n 1 ) cijele pohranjivati u memoriji računala. Kod većih problema klasifikacije skupovi R i postat će preveliki bez obzira na izbor skupova Y i (na primjer, kod klasifikacije frekvencijskih kvadrata reda 8). U radovima R.C.Reada [85] i I.A.Faradževa [33] opisani su algoritmi koji izbjegavaju problem filtriranja. U jednom trenutku pamte vrlo mali skup objekata (po jedan objekt sa svakog nivoa), a nove objekte ne moraju usporedivati s do tada pronadenim predstavnicima. Ovdje opisujemo dva takva algoritma pomoću uvedenih oznaka. Neka je zadano kanonsko preslikavanje c : X X. Fiksne točke od c (objekte A X sa svojstvom c(a) = A) zovemo kanonski objekti. Nije teško provjeriti da kanonski objekti čine skup predstavnika za X. Da bismo ih mogli generirati proširivanjem parcijalnih objekata, potreban je sljedeći aksiom. Aksiom 3. Ako je c(a) = A, onda je c(p(a)) = p(a). Drugim riječima, roditelji kanonskih objekata takoder su kanonski objekti. Idući rekurzivni algoritam zasniva se samo na Aksiomu 3 (Aksiomi 1 i 2 nisu potrebni). 11
14 Algoritam 1.29 pretraži(a : objekt, i : nivo stabla) ako je i = n onda ispiši A inače [ za sve B p 1 (A) radi ako je c(b) = B onda pretraži(b, i + 1) Propozicija 1.30 Ako vrijedi Aksiom 3, pozivom pretraži(o, 0) rekurzivne funkcije definirane Algoritmom 1.29 ispisat će se svi kanonski objekti na n- tom nivou stabla. Dokaz. Očito se ispisuju kanonski objekti reda n. Treba vidjeti da će se ispisati svi takvi objekti. Neka je C X n proizvoljan kanonski objekt. Indukcijom po i dokazujemo da će se dogoditi poziv pretraži(p n i (C), i), koji za i = n ispisuje C. Tvrdnja vrijedi za i = 0, jer tada dobivamo inicijalni poziv pretraži(o, 0). Pretpostavimo da se za neki i {0,..., n 1} dogodio poziv pretraži(p n i (C), i). Funkcija rekurzivno poziva samu sebe za sve kanonske objekte B p 1 (p n i (C)), a medu njima je zbog Aksioma 3 i objekt p n i 1 (C). Prema tome, dogodit će se poziv pretraži(p n i 1 (C), i + 1). Algoritam 1.29 ispisuje kanonske objekte na n-tom nivou stabla, ali zapravo pretražuje sve kanonske objekte na prethodnim nivoima. Slično kao kod klasičnog algoritma, moguće je ubrzati klasifikaciju prikladnim izborom podskupova Y i X i, i = 0,..., n, koji zadovoljavaju sljedeći aksiom. Aksiom 4. Za svaki kanonski objekt C X n vrijedi p n i (C) Y i, za i = 0,..., n. Na primjer, kod klasifikacije orbitnih matrica i frekvencijskih kvadrata ograničavamo se na matrice nekog posebnog oblika, u kojem su sve kanonske matrice. Algoritam 1.31 pretraži(a : objekt, i : nivo stabla) ako je i = n onda ispiši A inače [ za sve B p 1 (A) Y i+1 radi ako je c(b) = B onda pretraži(b, i + 1) 12
15 Propozicija 1.32 Ako vrijede Aksiomi 3 i 4, pozivom pretraži(o, 0) rekurzivne funkcije definirane Algoritmom 1.31 ispisat će se svi kanonski objekti na n-tom nivou stabla. Dokaz. Isti kao dokaz Propozicije Zbog Aksioma 4 jasno je da se preskaču samo oni parcijalni objekti koje nije moguće proširiti do kanonskog objekta stupnja n. U magistarskom radu [55] opisane su varijante prethodna dva algoritma koje stablo pretražuju po širini (Algoritam 3.19 i 3.22). Oni odjednom pamte cijele skupove predstavnika na nižim nivoima stabla, ali ne vrše filtriranje pa ih mogu pohranjivati na vanjsku memoriju računala. U disertaciji za klasifikaciju frekvencijskih kvadrata i orbitnih matrica koristimo Algoritme 1.29 i 1.31, implementirane programima fsorderly.c i orbmat.c. Algoritmi za klasifikaciju koji na ovaj način izbjegavaju filtriranje nazivaju se u [47] Read-Faradževljevi algotitmi. R.C.Read [85] svoj algoritam naziva orderly, jer na skupu objekata uvodi totalni uredaj, a algoritam ispisuje kanonske objekte u rastućem redoslijedu. Uredaj mora zadovoljavati odredene zahtjeve uskladenosti s kanonskim objektima i funkcijom p. Naša formulacija Algoritma 1.29 je slična, ali nije ovisna o izboru totalnog uredaja. Osim toga, kod nas je relacija izomorfizma inducirana djelovanjem grupe G na skup X, što nije slučaj u [85]. Po tom je sličnija formulacija I.A.Faradževa [33], gdje je algoritam opisan u okviru Pólya-de Bruijnovog modela iz enumerativne kombinatorike. Objekti tog modela su funkcije f : D H, a izomorfizam je induciran djelovanjem direktnog produkta grupa permutacija skupova D i H. U Faradževljevoj formulaciji takoder je potreban totalni uredaj na skupu D. Model unutar kojeg su algoritmi za klasifikaciju opisani u ovoj disertaciji najsličniji je B.D.McKayevom modelu iz [71] (uz neka pojednostavljenja), koji se odnosi na jednu drugu vrstu algoritama za klasifikaciju. Read-Faradževljevi algoritmi prihvaćaju samo kanonske objekte, a McKayevi algoritmi prihvaćaju samo objekte dobivene kanonskim proširivanjem (pri čemu nije važno jesu li objekti koji se proširuju kanonski). Prednost naše formulacije je u jednostavnosti. Algoritam 1.29 zasniva se u biti samo na jednom aksiomu (Aksiomu 3), dok je npr. u [71] formulirano 10 aksioma (Kaski [47] je primijetio da treba dodati i jedanaesti aksiom). Unutar istog modela formulirali smo klasični algoritam za klasifikaciju, zasnovan na filtriranju. Iako su takvi algoritmi zaista stari (na primjer, A.Sade [89] je na taj način prebrojio latinske kvadrate reda 7), u literaturi nismo našli općenit opis. Jasno je da su klasični algoritmi daleko manje efikasni od Read-Faradževljevih i sličnih algoritama koji izbjegavaju 13
16 filtriranje. Medutim, na današnjim brzim računalima mogu se i na taj način riješiti nezanemarivi problemi klasifikacije. U iduće dvije cjeline pomoću Algoritama 1.23 i 1.27 klasificirali smo nekoliko manjih linearnih prostora, frekvencijske kvadrate reda 7 i djelomično reda 8. Pored R.C.Read [85], I.A.Faradžev [33] i B.D.McKay [71], još neki radovi u kojima su na općenit način formulirani algoritmi za klasifikaciju su C.J.Colbourn, R.C.Read [25], L.A.Goldberg [39], D.Avis, K.Fukuda [2] i P.Kaski [47]. Potpun pregled rezultata dobivenih algoritmima za klasifikaciju zahtijevao bi puno veću bibliografiju nego u ovoj disertaciji. Spomenut ćemo radove P.C.Dennya i P.B.Gibbonsa [30] i [31] u kojima je prezentiran niz rezultata dobivenih klasičnim algoritmom uz razna poboljšanja, te radove E.Spencea koji je Read-Faradževljevim algoritmom klasificirao simetrične (31, 10, 3) dizajne [92], Hadamardove matrice reda 24 i 28 [93] i Steinerove 2-dizajne S(2, 4, 25) [94]. Neki noviji rezultati su M.Meringer [73] (regularni grafovi), J.Heitzig, J.Reinhold [42] (rešetke) i P.Kaski, P.R.J.Östergård [48], [49], [50] i [81] (2-dizajni). 1.4 Klasifikacija nekih linearnih prostora Neka su r 1,..., r v stupnjevi točaka, a k 1,..., k b stupnjevi pravaca linearnog prostora. Incidencijska matrica A = [a ij ] tog linearnog prostora je v b matrica nad {0, 1} sa svojstvima: v (1) a ij = k j, za 1 j b; (2) (3) (4) i=1 v i=1 b j=1 b j=1 a ij a ij 1, za 1 j < j b; a ij = r i, za 1 i v; a ij a i j = 1, za 1 i < i v. Klasifikaciju možemo organizirati na više načina. Možemo proširivati parcijalne linearne prostore dodavanjem točaka ili dodavanjem pravaca, čemu odgovara proširivanje parcijalnih incidencijskih matrica dodavanjem redaka ili dodavanjem stupaca. Obično je efikasnije dodavanje redaka, jer je uvjet (4) jači od uvjeta (2). Medutim, za taj pristup moraju biti poznati stupnjevi točaka. U drugom poglavlju disertacije javljaju se kao fiksne strukture automorfizama Steinerovih 2-dizajna linearni prostori s poznatim brojem točaka v, 14
17 brojem pravac b i stupnjevima pravaca k 1,..., k b, ali bez informacije o stupnjevima točaka. Takve linearne prostore klasificiramo dodavanjem pravaca, odnosno dodavanjem stupaca na parcijalne incidencijske matrice. Nužan uvjet ( za postojanje linearnog prostora sa zadanim stupnjevima pravaca je v ) 2 = b ( ki ) i=1 2 (dobiva se prebrojavanjem dvočlanih skupova točaka). Uz pretpostavku da je ispunjen, želimo uklopiti ovu situaciju u model iz prethodne cjeline unutar kojeg su formulirani algoritmi za klasifikaciju. Neka je X r skup svih v r matrica A = [a ij ] nad {0, 1} koje zadovoljavaju (1) (2) v i=1 v i=1 a ij = k j, za 1 j r; a ij a ij 1, za 1 j < j r. Zbog relacije ( v 2) = b ( ki ) i=1 2 skup Xb sadrži incidencijske matrice linearnih prostora koje klasificiramo, tj. za r = b ispunjen je i zahtjev (4). Za skup objekata uzimamo X = X 0 X b, a za funkciju p : X X brisanje zadnjeg stupca matrice. Red matrice ord A je broj njezinih stupaca. Neka je K r podgrupa svih permutacija iz S r koje ostavljaju vektor (k 1,..., k r ) invarijantnim. Grupa G r = S v K r djeluje na matrice iz X r permutiranjem redaka i stupaca, a direktan produkt G = G 0 G b na prirodan način djeluje na X: (g 0,..., g b ) A = g ord A A, za (g 0,..., g b ) G i A X. Jasno je da se pri takvom djelovanju čuva red objekata, tj. ispunjen je Aksiom 0. Da bismo mogli koristiti klasični algoritam za klasifikaciju, treba još provjeriti Aksiom 1. Neka je g = (g 0,..., g b ) G i g r = (α, β), za α S v i β K r. Definiramo { β(i), za i r β K r+1, β(i) = r + 1, za i = r + 1 Za g r+1 = (α, β), g = (g 0,..., g b ) i za svaki A X vrijedi g p(a) = p(g A). Primjer 1.33 Klasificiramo linearne prostore s v = 11 točaka i b = 16 pravaca stupnjeva k 1 = 5, k 2 =... = k 16 = 3, koji se javljaju u dokazu Propozicije 2.3. Za proširivanje parcijalnih incidencijskih matrica koristimo program linexpand.c, a za filtriranje incfilter.c. Broj matrica u skupovima definiranim Algoritmom 1.23 dan je u tablici. i R i i R i
18 Vidimo da je linearni prostor jedinstven do na izomorfizam. Stupnjevi točaka su r 1 =... = r 5 = 4, r 6 =... = r 11 = 5. Primjer 1.34 Klasificiramo linearne prostore s v = 13 točaka i b = 23 pravaca stupnjeva k 1 =... = k 11 = 4, k 12 =... = k 23 = 2. Oni se javljaju kao fiksne strukture automorfizama reda 2 dizajna S(2, 4, 37) (Propozicija 2.18). Rezultati klasifikacije navedeni su u sljedećoj tablici. i R i i R i Vidimo da postoji samo jedan takav linearni prostor. Stupnjevi točaka su r 1 =... = r 6 = 4, r 7 =... = r 12 = 6, r 13 = 8. Linearni prostori TSC(k, l) imaju v = k(k 1)+l(l 1)+1 točaka, b = 2v pravaca, svaka točaka je stupnja k+l, točno pola pravaca je stupnja k, a druga polovica je stupnja l. Za njih je efikasnije klasifikaciju provoditi dodavanjem točaka, odnosno dodavanjem redaka na parcijalne incidencijske matrice. Neka je X r skup svih r b matrica A = [a ij ] nad {0, 1} sa svojstvima: (1) (2) (3) b a ij = k + l, za 1 i r; b a ij a i j = 1, za 1 i < i r; j=1 j=1 v a ij i=1 max{k, l}, za 1 j b, pri čemu se jednakost dostiže najviše za v indeksa j. Skup X v osim incidencijskih matrica TSC(k, l) prostora može sadržati incidencijske matrice drugih linearnih prostora. U sljedećem specijalnom slučaju ipak sadrži samo dobre matrice. Propozicija 1.35 Ako je b = 2v i l = k + 1, skup X v sadrži samo incidencijske matrice TSC(k, k + 1) prostora. Dokaz. Promatramo incidencijsku strukturu reprezentiranu matricom iz X v. Svaka točka je stupnja 2k + 1, pa je ukupan broj incidencija v(2k + 1). Ako sa b 1 označimo broj pravaca stupnja najviše k, a sa b 2 broj pravaca 16
19 stupnja k + 1, broj incidencija nije veći od k b 1 + (k + 1)b 2. Iz b 1 + b 2 = 2v i v(2k + 1) k b 1 + (k + 1)b 2 slijedi b 2 v. U zahtjevu (3) tražimo b 2 v, pa je broj pravaca stupnja k + 1 točno v. Iz toga takoder slijedi da su sve ostale točke stupnja k. Dakle, imamo linearni prostor sa v točaka stupnja 2k + 1, v pravaca stupnja k i v pravaca stupnja k + 1. Prebrojavanjem trojki (P, Q, l), gdje su P, Q dvije točke na pravcu l, vidimo da je v = 2k Da bi imali TSC(k, k + 1) prostor, nedostaje još svojstvo (2) iz Definicije 1.8. Neka je r 1 broj pravaca stupnja k, a r 2 broj pravaca stupnja k + 1 kroz neku točku P. Vrijedi r 1 + r 2 = 2k + 1 i r 1 (k 1) + r 2 k = v 1 = 2k 2. Iz toga slijedi r 1 = k i r 2 = k + 1, tj. kroz svaku točku prolazi k pravaca stupnja k i k + 1 pravaca stupnja k + 1. Za skup objekata uzimamo uniju X = X 0 X v, a za funkciju p : X X brisanje zadnjeg retka matrice. Red matrice ord A je broj njezinih redaka. Grupa G r = S r S b djeluje na matrice skupa X r permutiranjem redaka i stupaca, a direktan produkt G = G 0 G v djeluje na X isto kao prije: (g 0,..., g v ) A = g ord A A, za (g 0,..., g v ) G i A X. Aksiom 0 je očito ispunjen, a Aksiom 1 provjeravamo slično kao prije. Za g = (g 0,..., g v ), g r = (α, β), α S r, β S b definiramo { α(i), za i r α S r+1, α(i) = r + 1, za i = r + 1 Tada za g r+1 = (α, β), g = (g 0,..., g v ) i za svaki A X vrijedi g p(a) = p(g A). Primjer 1.36 Klasificiramo linearne prostore TSC(3, 4), sa v = 19 točaka i b = 38 pravaca. Točke su stupnja 7, a pravci stupnja 3 i 4. Algoritam 1.23 nije dovoljno efikasan, pa ograničavamo klasifikaciju na incidencijske matrice posebnog oblika i primjenjujemo Algoritam Gornji dio incidencijske matrice bilo kojeg TSC(3, 7) prostora može se permutiranjem redaka i stupaca dovesti u ovaj oblik: A 0 = Oblik se postiže kad prva četiri retka odgovaraju točkama nekog pravca stupnja 4, iduća tri retka točkama nekog drugog pravca stupnja 4 kroz prvu točku 17
20 i R i i R i Tablica 1: Klasifikacija TSC(3, 4) prostora. i ako su stupci sortirani padajuće obzirom na leksikografski uredaj. Za skup Y i X i uzimamo sve matrice iz X i koje se s matricom A 0 podudaraju u prvih min{7, i} redaka. Slijedi provjera Aksioma 2. Neka je A X 19 potpuna incidencijska matrica TSC(3, 4) prostora sa svojstvom p 19 i (A) Y i, tj. koja se podudara s matricom A 0 u prvih min{7, i} redaka. Za i 7 očito je p 19 i 1 (A) Y i+1, pa možemo uzeti g = 1. S druge strane, za i < 7 može se kao što je opisano permutacijom redaka i stupaca g G postići da se matrica g A podudara s matricom A 0 u prvih sedam redaka. Za taj g vrijedi p 19 i (g A) = p 19 i (A) i p 19 i 1 (g A) Y i+1. Klasifikaciju započinjemo od R 7 = Y 7 = {A 0 } (skupovi Y 1,..., Y 7 su jednočlani). Parcijalne incidencijske matrice proširujemo programom tsc3-4expand.c, a filtriramo ponovo sa incfilter.c. Rezultati klasifikacije dani su u Tablici 1. Dakle, postoji točno 56 neizomorfnih TSC(3, 4) prostora, čija su svojstva navedena u Tablici 9 (u cjelini 2.5). Ovaj rezultat dobiven je u sklopu rada [61]. Linearni prostori bez ograničenja na broj pravaca i stupnjeve točaka i pravaca klasificirani su za v 12. Neka je LIN(v) broj neizomorfnih linearnih prostora s v točaka. Poznate vrijednosti navodimo u sljedećoj tablici. v LIN(v) Broj LIN(11) izračunao je C.Pietsch [83], tako da je prvo odredio sve mogućnosti za broj i stupnjeve pravaca, a zatim u svakom pojedinom slučaju klasificirao linearne prostore Read-Faradževljevim algoritmom. A.Betten i D.Betten [9] izračunali su LIN(12) algoritmom kojeg nazivaju TDO-metoda (zasniva se na taktičkim dekompozicijama incidencijskih matrica). Isti autori su u [8] i [11] klasificirali prave linearne prostore (bez pravaca stupnja 2) s v = 17 i v = 18 točaka. Broj pravih linearnih prostora označavamo PLIN(v) i navodimo poznate vrijednosti u tablici. v PLIN(v)
21 1.5 Klasifikacija frekvencijskih kvadrata U ovoj cjelini odredujemo skupove predstavnika svih frekvencijskih kvadrata reda n 8 obzirom na relaciju izotopije. Za latinske kvadrate reda n 8 broj klasa izotopije i glavnih klasa je poznat, ali medu brojevima objavljenim u literaturi ima puno netočnih. H.W.Norton [80] našao je 146 glavnih klasa latinskih kvadrata reda 7. Točnu vrijednost, 147, odredio je A.Sade [89]. J.W.Brown [20] objavio je kao broj klasa izotopije latinskih kvadrata reda 8, a V.L.Arlazarov i dr. [1] kao broj glavnih klasa. Točne vrijednosti, i , našli su G.Kolesova, C.W.H.Lam i L.Thiel [53]. Na više mjesta u literaturi navodi se 563 kao broj klasa izotopije latinskih kvadrata reda 7, na primjer u [24, Tablica II.1.6] i [26, Tablica 4.3.2]. U diplomskom radu [54] pronadeno je 564 klasa izotopije, a isti broj dobio je B.D.McKay [71]. Nije jasno odakle potječe pogrešna vrijednost 563 (vjerojatno se prepisuje još od Nortona). L.J.Brant i G.L.Mullen [18] navode predstavnike klasa izotopije frekvencijskih kvadrata reda n 6, osim za frekvencijske vektore λ = (2, 2, 2), (2, 2, 1, 1) i (2, 1, 1, 1, 1). Konstruirali su ih filtriranjem skupova reduciranih frekvencijskih kvadrata. Definicija 1.37 Za frekvencijski kvadrat kažemo da je reduciran ako su brojevi u prvom retku i stupcu poredani uzlazno. Skup svih frekvencijskih kvadrata reda n s frekvencijskim vektorom λ označavamo F (n; λ), a skup reduciranih frekvencijskih kvadrata f(n; λ). Reducirani latinski kvadrati imaju u prvom retku i stupcu vektor [ 1 2 n ]. Skup svih latinskih kvadrata reda n označavamo L(n), a reduciranih latinskih kvadrata l(n). Broj reduciranih latinskih i frekvencijskih kvadrata vrlo brzo raste s redom n (usp. Tablice 4 i 5). Za veće redove ne možemo dobiti predstavnike klasa izotopije filtriranjem svih reduciranih kvadrata, nego koristimo klasifikacijske algoritme iz cjeline 1.3. Trebaju nam sljedeći pojmovi. Definicija 1.38 Frekvencijski k n pravokutnik s frekvencijskim vektorom λ = (λ 1,..., λ s ) je matrica dimenzija k n nad N s u kojoj se broj i javlja najviše λ i puta u svakom retku i stupcu, za i = 1,..., s. Definicija 1.39 Za frekvencijski k n pravokutnik kažemo da je reduciran ako su brojevi u prvom retku poredani uzlazno, a prvi stupac slaže se s prvih k elemenata prvog retka. 19
22 Skup svih frekvencijskih i latinskih k n pravokutnika s označavamo F (k, n; λ) i L(k, n), a reduciranih frekvencijskih i latinskih pravokutnika f(k, n; λ) i l(k, n). Za dani frekvencijski vektor λ = (λ 1,..., λ s ) i red n = λ λ s želimo konstruirati jedan predstavnik iz svake klase izotopije kvadrata u F (n; λ). Neka su objekti na k-tom nivou stabla frekvencijski k n pravokutnici, X k = F (k, n; λ), a skup svih objekata X = X 0 X n. Funkcija p : X X odbacuje zadnji redak matrice, tako da je ord(a) broj redaka matrice A. Grupa G k = S k S n K djeluje na X k permutiranjem redaka, stupaca i simbola, pri čemu je K podgrupa svih permutacija σ S s sa svojstvom λ i = λ σ(i), i = 1,..., s (koje ostavljaju frekvencijski vektor invarijantnim). Na cijelom skupu X djeluje direktan produkt G = G 0 G n na prirodan način: (g 0,..., g n ) A = g ord(a) A. Djelovanje čuva broj redaka, tj. ispunjen je Aksiom 0. Klasifikaciju najprije provodimo Algoritmom 1.27 sa Y k = f(k, n; λ) (klasični algoritam uz ograničavanje na reducirane frekvencijske pravokutnike). To je u biti metoda kojom je A.Sade [89] odredio klase izotopije latinskih kvadrata reda 7. Krećemo od jedinstvenog reduciranog 1 n pravokutnika R 1 f(1, n; λ), tj. vektora koji se sastoji redom od λ 1 jedinica, λ 2 dvojki i tako dalje. Proširujemo ga na sve moguće načine do reduciranog frekvencijskog 2 n pravokutnika (iz skupa f(2, n; λ)) i medu njima eliminiramo izotopne. U idućem koraku proširujemo dobivene 2 n pravokutnike do pravokutnika iz skupa f(3, n; λ), eliminiramo izotopne i analogno nastavljamo dalje. Želimo dokazati da u n-tom koraku dobivamo skup predstavnika za F (n; λ). To slijedi iz Propozicije 1.28 ako vrijede Aksiomi 1 i 2. Za provjeru Aksioma 1 uzmimo proizvoljan g = (g 0,..., g n ) G, gdje je g k = (α, β, σ), α { S k, β S n i σ K. Definiramo g k+1 = (α, β, σ), za α(i), za i k α S k+1, α(i) = k + 1, za i = k + 1. Tada za g = (g 0,..., g n ) i za proizvoljan A X vrijedi p(g A) = g p(a). Provjeravamo Aksiom 2; neka je A = [a ij ] X n frekvencijski kvadrat čijih prvih k redaka čine reduciran frekvencijski pravokutnik (p n k (g A) Y k ). Treba vidjeti da postoji njemu izotopan kvadrat ga koji se s A podudara u prvih k redaka (p n k (ga) = p n k (A)) i kojem prvih k + 1 redaka čine reduciran frekvencijski pravokutnik (p n k 1 (ga) Y k+1 ). Označimo komponente jedinstvenog reduciranog 1 n pravokutnika sa R 1 = [ r 1 r n ]. Ako je a k+1,1 = r k+1, možemo uzeti g = id. U suprotnom, r k+1 se mora pojaviti medu brojevima a k+2,1,..., a n,1, recimo u i-tom retku (a i,1 = r k+1 ). Tada za transpoziciju α = (k + 1, i) i za g = (id,..., id, (α, id, id)) vrijedi p n k (ga) = p n k (A) i p n k 1 (ga) Y k+1. Time su provjerene pretpostavke 20
23 n λ Br. klasa n λ Br. klasa 3 (2, 1) 1 7 (3, 2, 2) (1, 1, 1) 1 (3, 2, 1, 1) (3, 1) 1 (3, 1, 1, 1, 1) (2, 2) 2 (2, 2, 2, 1) (2, 1, 1) 2 (2, 2, 1, 1, 1) (1, 1, 1, 1) 2 (2, 1, 1, 1, 1, 1) (4, 1) 1 (1, 1, 1, 1, 1, 1, 1) 564 (3, 2) 2 8 (7, 1) 1 (3, 1, 1) 2 (6, 2) 7 (2, 2, 1) 4 (6, 1, 1) 7 (2, 1, 1, 1) 3 (5, 3) 51 (1, 1, 1, 1, 1) 2 (5, 2, 1) (5, 1) 1 (5, 1, 1, 1) 370 (4, 2) 4 (4, 4) 156 (4, 1, 1) 4 (4, 3, 1) (3, 3) 7 (4, 2, 2) (3, 2, 1) 23 (4, 2, 1, 1) (3, 1, 1, 1) 16 (4, 1, 1, 1, 1) (2, 2, 2) 46 (3, 3, 2) (2, 2, 1, 1) 106 (3, 3, 1, 1) (2, 1, 1, 1, 1) 56 (3, 2, 2, 1) (1, 1, 1, 1, 1, 1) 22 (3, 2, 1, 1, 1) (6, 1) 1 (3, 1, 1, 1, 1, 1) (5, 2) 4 (2, 2, 2, 2) (5, 1, 1) 4 (2, 2, 2, 1, 1) (4, 3) 16 (2, 2, 1, 1, 1, 1) (4, 2, 1) 92 (2, 1, 1, 1, 1, 1, 1) (4, 1, 1, 1) 56 (1, 1, 1, 1, 1, 1, 1, 1) (3, 3, 1) 226 Tablica 2: Broj klasa izotopije frekvencijskih kvadrata. Propozicije 1.28, pa zaključujemo da Algoritam 1.27 zaista definira skup predstavnika za frekvencijske kvadrate u F (n; λ). Na ovaj način klasificirali smo frekvencijske kvadrate reda 7 i 8, osim za frekvencijske vektore λ = (2, 2, 2, 2), (2, 2, 2, 1, 1), (2, 2, 1, 1, 1, 1), (2, 1, 1, 1, 1, 1, 1) i (1, 1, 1, 1, 1, 1, 1, 1). Rezultati su navedeni u Tablici 2. Algoritam 1.27 implementiran je programima fsexpand.c (proširivanje reduciranih frekvencijskih pravokutnika jednim retkom) i isofilter.c (filtriranje izotopnih pravokutnika). U završnih nekoliko koraka obično je efikasnije 21
24 zanemariti filtriranje, jer se proširivanjem jednim retkom dobiva više pravokutnika nego proširivanjem do kraja. Kod klasifikacije kvadrata reda 8 za pojedine frekvencijske vektore filtrirali smo do 5. retka, zatim smo 5 8 pravokutnike proširivali do reduciranih frekvencijskih kvadrata i na kraju eliminirali izotopne (korišten je program fscomplete.c). Za spomenute frekvencijske vektore reda 8 nije bilo moguće provesti klasifikaciju klasičnim algoritmom. Broj neizotopnih frekvencijskih pravokutnika koje treba filtrirati prevelik je za pamćenje u radnoj memoriji računala, a prelazak na vanjsku memoriju previše usporava algoritam. U tim slučajevima klasifikaciju provodimo Read-Faradževljevim algoritmom uz kanonsko preslikavanje c : X X, c(a) = min{ga g G}. Dakle, c(a) je minimalni frekvencijski pravokutnik izotopan pravokutniku A obzirom na leksikografski uredaj [55, Definicija 3.7]. Minimalni predstavnici su reducirani, pa za Algoritam 1.31 možemo uzeti Y k = f(k, n; λ) (tj. ograničiti klasifikaciju na reducirane frekvencijske pravokutnike). Očito je ispunjen Aksiom 4, a u idućoj lemi provjeravamo Aksiom 3. Lema 1.40 Ako je A F (k, n; λ) kanonski frekvencijski pravokutnik (najmanji od svih pravokutnika izotopnih s A), onda je pravokutnik p(a) F (k 1, n; λ) takoder kanonski. Dokaz. Pretpostavimo suprotno, da postoji izotopija g G takva da je g p(a) < p(a). Provjerili smo Aksiom 2, prema kojem postoji izotopija g G takva da je g p(a) = p(ga). Slijedi p(ga) < p(a), a zbog leksikografskog usporedivanja matrica iz toga slijedi ga < A. Dobili smo kontradikciju s pretpostavkom da je A minimalni element klase izotopije kojoj pripada. Algoritam 1.31 u ovom je kontekstu implementiran programom fsorderly.c. Računanje minimalnih predstavnika klasa izotopije realizirano je tako da se za svaku permutaciju simbola koja čuva frekvencijski vektor pomoću [55, Algoritam 3.10] odreduje minimalni predstavnik dobiven permutiranjem redaka i stupaca, te se bira najmanji medu njima. To bi se vjerojatno moglo realizirati znatno efikasnije, ali program je dovoljno brz za klasifikaciju svih frekvencijskih kvadrata reda n 8 osim za frekvencijski vektor λ = (1, 1, 1, 1, 1, 1, 1, 1). Rezultati se slažu u slučajevima koji su prethodno klasificirani klasičnim algoritmom i navedeni su u Tablici 2. Program fsorderly.c najsporiji je za latinske kvadrate, jer kod računanja minimalnih predstavnika provjerava n! permutacija simbola. Latinski kvadrati reda 8 klasificirani su u [53] klasičnim algoritmom. Medutim, nije korištena varijanta A.Sadea [89], u kojoj se klasifikacija ograničava na reducirane kvadrate, nego varijanta J.W.Browna [20], u kojoj se razmatraju 22
25 samo latinski kvadrati čija se gornja polovica sastoji od parnih permutacija. U našim oznakama, uzima se Y k = {A L(k, n) prvih n+1 redaka od A su 2 parne permutacije} i primjenjuje Algoritam Ponovili smo klasifikaciju na taj način i dobili isti broj predstavnika kao u [53]. Za proširivanje latinskih pravokutnika parnim ili neparnim recima korišten je program lsexpand.c. Kvazigrupa s jedinicom naziva se petlja [100]. Konačnim petljama odgovaraju latinski kvadrati koji imaju redak i stupac s elementima u prirodnom poretku (ne nužno prvi, kao kod reduciranih latinskih kvadrata). Definicija 1.41 Za latinski kvadrat A = [a ij ] L(n) kažemo da je petlja ako postoji indeks i takav da je a ij = a ji = j, za svaki j = 1,..., n. Indeks i zovemo jedinica petlje. Skup svih petlji reda n označavamo P (n). Izotop petlje ne mora biti petlja, ali svojstvo postojanja jedinice čuva se pod djelovanjem grupe izomorfizama. Točnije, simetrična grupa S n djeluje na skup P (n) na sljedeći način: ϕa = [ ϕ(a ϕ 1 (i)ϕ 1 (j)) ], za ϕ S n, A = [a ij ] P (n). Neizomorfne petlje reda 6 prebrojane su u [21], a reda 7 u [17]. Broj neizomorfnih petlji reda n 6 takoder je naveden u [26, Tablica 4.3.2] i [24, Tablica II.1.6]. Koristeći skup predstavnika klasa izotopije prebrojili smo neizomorfne petlje reda 8. Poznato je da su latinski kvadrati A, B izotopni ako i samo ako je A izomorfan glavnom izotopu od B [100, Teorem 2.1.9] (glavne izotopije su permutacije redaka i stupaca). Prema tome, svaki latinski kvadrat izomorfan je glavnom izotopu nekog kvadrata iz skupa predstavnika klasa izotopije, a svaka petlja glavnom izotopu koji je i sam petlja. U idućoj propoziciji dokazujemo da medu glavnim izotopima latinskog kvadrata reda n ima najviše n 2 petlji. Propozicija 1.42 Neka je A latinski kvadrat reda n. Glavni izotop (ϕ, ψ, id)a je petlja točno za n 2 parova (ϕ, ψ) S n S n. Dokaz. Označimo retke matrice A sa A(1),..., A(n), a stupce sa A τ (1),... A τ (n). Ako retke i stupce promatramo kao permutacije i kompoziciju permutacija označavamo, možemo pisati (ϕ, ψ, id)a = A(ϕ 1 (1)) ψ 1. A(ϕ 1 (n)) ψ 1 = A τ (ψ 1 (1)) ϕ 1. A τ (ψ 1 (n)) ϕ 1 Vidimo da je (ϕ, ψ, id)a petlja ako i samo ako je ψ = A(i), ϕ = A τ (j) za neke i, j = 1,..., n. τ 23
Konacne grupe, dizajni i kodovi
Konačne grupe, dizajni i kodovi Andrea Švob (asvob@math.uniri.hr) 1. veljače 2011. Andrea Švob (asvob@math.uniri.hr) () Konačne grupe, dizajni i kodovi 1. veljače 2011. 1 / 36 J. Moori, Finite Groups,
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski
ВишеJMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n
1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte
ВишеMatrice. Algebarske operacije s matricama. - Predavanje I
Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,
ВишеPRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Doris Dumičić Danilović Poopćenje i profinjenje nekih algoritama za konstrukciju blokovnih dizaj
PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Doris Dumičić Danilović Poopćenje i profinjenje nekih algoritama za konstrukciju blokovnih dizajna i istraživanje njihovih podstruktura DOKTORSKI RAD
ВишеJMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (
MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija
ВишеUAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević
Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture5. Vektorski prostori 2 5.1 Unutarnja i vanjska množenja Imamo dvije vrste algebarskih operacija, tzv. unutarnja
ВишеJMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1.
MJERA I INTEGRAL završni ispit 6. srpnja 208. (Knjige bilježnice dodatni papiri i kalkulatori nisu dozvoljeni!). (8 bodova) Kao na predavanjima za d N sa P d : a b ] a d b d ] : a i b i R a i b i za i
ВишеSkripte2013
Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar
Вишеvjezbe-difrfv.dvi
Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je
Вишеknjiga.dvi
1. Vjerojatnost 1. lgebra dogadaja......................... 1 2. Vjerojatnost............................. 9 3. Klasični vjerojatnosni prostor................. 14 4. eskonačni vjerojatnosni prostor...............
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc.
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, lipanj 015. Ovaj diplomski
ВишеMicrosoft Word - 15ms261
Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik
ВишеSadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor
Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca
ВишеZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2.
ZADACI ZA VJEŽBU. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C).. Pomoću matematičke indukcije dokažite da za svaki n N vrijedi:
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Mihael Maltar MATRICE UDALJENOSTI U GRAFOVIMA Diplomski rad Voditelj rada:
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Mihael Maltar MATRICE UDALJENOSTI U GRAFOVIMA Diplomski rad Voditelj rada: prof. dr. sc. Tomislav Došlić Zagreb, rujan, 2018.
ВишеLinearna algebra Mirko Primc
Linearna algebra Mirko Primc Sadržaj Poglavlje 1. Polje realnih brojeva 5 1. Prirodni i cijeli brojevi 5 2. Polje racionalnih brojeva 6 3. Polje realnih brojeva R 9 4. Polje kompleksnih brojeva C 13 5.
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
ВишеSveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Valentina Barić Geometrijske v k konfiguracije Diplomski rad Voditelj rada
Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Valentina Barić Geometrijske v k konfiguracije Diplomski rad Voditelj rada: prof.dr.sc. Vedran Krčadinac Zagreb, travanj 2018.
Више2015_k2_z12.dvi
OBLIKOVANJE I ANALIZA ALGORITAMA 2. kolokvij 27. 1. 2016. Skice rješenja prva dva zadatka 1. (20) Zadano je n poslova. Svaki posao je zadan kao vremenski interval realnih brojeva, P i = [p i,k i ],zai
ВишеMatematika 1 - izborna
3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva
Више(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši
ВишеGrafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odr
Grafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odrediti njene krajeve. b) Odrediti sledeće skupove: -
ВишеMicrosoft Word - predavanje8
DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).
ВишеSlide 1
0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elizabeta Borovec ALGEBARSKA PROŠIRENJA POLJA Diplomski rad Voditelj rada:
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elizabeta Borovec ALGEBARSKA PROŠIRENJA POLJA Diplomski rad Voditelj rada: prof. dr. sc. Dražen Adamović Zagreb, rujan, 2015.
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Martina Barić PARTICIJE PRIRODNIH BROJEVA Diplomski rad Voditelj rada: izv
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Martina Barić PARTICIJE PRIRODNIH BROJEVA Diplomski rad Voditelj rada: izv. prof. dr. sc. Zrinka Franušić Zagreb, rujan 2017
ВишеNumerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p
Numerička matematika 11. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. predavanje dodatak p. 1/46 Sadržaj predavanja dodatka
ВишеLINEARNA ALGEBRA 2 Popravni kolokvij srijeda, 13. velja e Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x 3, x 4 ) C 4 : x 1
Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x, x 4 ) C 4 : x 1 + x 2 + x = 0, x 1 = 2x 2 } unitarnog prostora C 4 sa standardnim skalarnim produktom i vektor v = (2i, 1, i, ) C 4.
Више(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)
. B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji
Више7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16
7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.
ВишеPripreme 2016 Indukcija Grgur Valentić lipanj Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO
Pripreme 016 Indukcija Grgur Valentić lipanj 016. Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO kandidate. Zato su zadaci podjeljeni u odlomka. U uvodu
Више8. razred kriteriji pravi
KRITERIJI OCJENJIVANJA MATEMATIKA 8. RAZRED Učenik će iz nastavnog predmeta matematike biti ocjenjivan usmeno i pismeno. Pismeno ocjenjivanje: U osmom razredu piše se šest ispita znanja i bodovni prag
ВишеOblikovanje i analiza algoritama 4. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb OAA 2017, 4. pr
Oblikovanje i analiza algoritama 4. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb OAA 2017, 4. predavanje p. 1/69 Sadržaj predavanja Složenost u praksi
Више1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan
1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2
Више8 2 upiti_izvjesca.indd
1 2. Baze podataka Upiti i izvješća baze podataka Na početku cjeline o bazama podataka napravili ste plošnu bazu podataka o natjecanjima učenika. Sada ćete izraditi relacijsku bazu u Accessu o učenicima
ВишеElementarna matematika 1 - Oblici matematickog mišljenja
Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s
ВишеGeneralizirani trag i normalne forme za logiku interpretabilnosti Vedran Čačić PMF Matematički odsjek Sveučilište u Zagrebu Dubrovnik radiona Sustavi
Generalizirani trag i normalne forme za logiku interpretabilnosti Vedran Čačić PMF Matematički odsjek Sveučilište u Zagrebu Dubrovnik radiona Sustavi dokazivanja 28. lipnja 2012. Zašto logika interpretabilnosti?
Више(Microsoft Word - Rje\232enja zadataka)
1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:
ВишеProblemi zadovoljavanja ogranicenja.
I122 Osnove umjetne inteligencije Tema:. 7.1.2016. predavač: Darija Marković asistent: Darija Marković 1 I122 Osnove umjetne inteligencije. 2/26 (PZO) Problem zadovoljavanja ograničenja sastoji se od 3
ВишеANALITIČKA GEOMETRIJA Željka Milin Šipuš i Mea Bombardelli verzija Uvod i povijesni osvrt Analitička geometrija bavi se proučavanjem (klasične)
ANALITIČKA GEOMETRIJA Željka Milin Šipuš i Mea Bombardelli verzija 1.0 1 Uvod i povijesni osvrt Analitička geometrija bavi se proučavanjem (klasične) euklidske geometrije ravnine i prostora koristeći algebarske
ВишеTeorija skupova - blog.sake.ba
Uvod Matematika je jedan od najomraženijih predmeta kod većine učenika S pravom, dakako! Zapitajmo se šta je uzrok tome? Da li je matematika zaista toliko teška, komplikovana? Odgovor je jednostavan, naravno
ВишеGrupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013./ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani
Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013/2014 1 5 Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani s više obilježja (atributa), ta se obilježja mogu međusobno
ВишеAlgoritmi SŠ P1
Državno natjecanje iz informatike Srednja škola Prvi dan natjecanja 2. ožujka 219. ime zadatka BADMINTON SJEME MANIPULATOR vremensko ograničenje 1 sekunda 1 sekunda 3 sekunde memorijsko ograničenje 512
ВишеOptimizacija
Optimizacija 1 / 43 2 / 43 Uvod u optimizaciju Zadana funkcija Uvod u optimizaciju f : R n R Cilj: Naći x, točku minimuma funkcije f : - Problem je jednostavno opisati x = arg min x R n f (x). - Rješavanje
ВишеMicrosoft Word - 09_Frenetove formule
6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog
ВишеSveučilište u Zagrebu PMF Matematički odjel Filip Nikšić PROPOZICIONALNA DINAMIČKA LOGIKA Diplomski rad Zagreb, listopad 2009.
Sveučilište u Zagrebu PMF Matematički odjel Filip Nikšić PROPOZICIONALNA DINAMIČKA LOGIKA Diplomski rad Zagreb, listopad 2009. Sveučilište u Zagrebu PMF Matematički odjel Filip Nikšić PROPOZICIONALNA DINAMIČKA
ВишеSkalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler
i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba
ВишеDUBINSKA ANALIZA PODATAKA
DUBINSKA ANALIZA PODATAKA () ASOCIJACIJSKA PRAVILA (ENGL. ASSOCIATION RULE) Studeni 2018. Mario Somek SADRŽAJ Asocijacijska pravila? Oblici učenja pravila Podaci za analizu Algoritam Primjer Izvođenje
ВишеProgramiranje 2 popravni kolokvij, 15. lipnja Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanj
Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, te službeni šalabahter. Kalkulatori, mobiteli, razne neslužbene tablice, papiri i sl., nisu dozvoljeni! Sva rješenja napišite
ВишеSveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Margareta Tvrdy Banachovi prostori Završni rad Osijek, 2013
Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Margareta Tvrdy Banachovi prostori Završni rad Osijek, 2013. Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku
ВишеMatematika kroz igru domino
29. travnja 2007. Uvod Domino pločice pojavile su se u Kini davne 1120. godine. Smatra se da su pločice izvedene iz igraće kocke, koja je u Kinu donešena iz Indije u dalekoj prošlosti. Svaka domino pločica
Више1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O
http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..
ВишеŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI
ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK
Више(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.
ВишеCelobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica
Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da
ВишеALIP1_udzb_2019.indb
Razmislimo Kako u memoriji računala prikazujemo tekst, brojeve, slike? Gdje se spremaju svi ti podatci? Kako uopće izgleda memorija računala i koji ju elektronički sklopovi čine? Kako biste znali odgovoriti
ВишеMicrosoft Word - z4Ž2018a
4. razred - osnovna škola 1. Izračunaj: 52328 28 : 2 + (8 5320 + 5320 2) + 4827 5 (145 145) 2. Pomoću 5 kružića prikazano je tijelo gusjenice. Gusjenicu treba obojiti tako da dva kružića budu crvene boje,
ВишеMetoda konačnih elemenata; teorija i praktična implementacija math.e 1 of 15 Vol.25. math.e Hrvatski matematički elektronički časopis Metoda konačnih
1 of 15 math.e Hrvatski matematički elektronički časopis Metoda konačnih elemenata; teorija i praktična implementacija klavirska žica konačni elementi mehanika numerička matematika Andrej Novak Sveučilište
Више07jeli.DVI
Osječki matematički list 1(1), 85 94 85 Primjena karakterističnih funkcija u statistici Slobodan Jelić Sažetak. U ovom radu odred ene su funkcije distribucije aritmetičke sredine slučajnog uzorka duljine
ВишеPLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)
PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove
ВишеHej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D
Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.
ВишеMAT KOL (Banja Luka) ISSN (p), ISSN (o) Vol. XX (2)(2014), PELLOVA JEDNAČINA I PITAGORIN
MAT KOL (Banja Luka) ISSN 0354 6969 (p), ISSN 986 5228 (o) Vol. XX (2)(204), 59 68 http://www.imvibl.org/dmbl/dmbl.htm PELLOVA JEDNAČINA I PITAGORINE TROJKE Amra Duraković Bernadin Ibrahimpašić 2, Sažetak
Више08 RSA1
Преглед ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције RSA алгоритам Биће објашњено: RSA алгоритам алгоритам прорачунски аспекти ефикасност коришћењем јавног кључа генерисање кључа сигурност проблем
Више3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papir
3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papira. Neprekinute funkcije vaºne su u teoriji i primjenama.
Више(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc)
Zadatak Pokažite, koristeći svojstva esa, da je ( 6 ) 5 Svojstva esa funkcije u točki: Ako je k konstanta, k k c c c f ( ) L i g( ) M, tada vrijedi: c c [ f ( ) ± g( ) ] c c f ( ) ± g( ) L ± M c [ f (
Више(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)
5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj
ВишеSveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Jelena Martić Laguerreova geometrija Diplomski rad Voditelj rada: prof.dr.
Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Jelena Martić Laguerreova geometrija Diplomski rad Voditelj rada: prof.dr.sc. Vedran Krčadinac Zagreb, rujan 2015. Ovaj diplomski
ВишеAlgebarski izrazi (4. dio)
Dodatna nastava iz matematike 8. razred Algebarski izrazi (4. dio) Aleksandra-Maria Vuković OŠ Gornji Mihaljevec amvukovic@gmail.com 12/21/2010 SADRŽAJ 7. KVADRATNI TRINOM... 3 [ Primjer 18. Faktorizacija
ВишеMATEMATIČKA ANALIZA I primjeri i zadaci Ante Mimica 8. siječnja 2010.
MATEMATIČKA ANALIZA I primjeri i zadaci Ante Mimica 8 siječnja 00 Sadržaj Funkcije 5 Nizovi 7 3 Infimum i supremum 9 4 Neprekidnost i es 39 3 4 SADRZ AJ Funkcije 5 6 FUNKCIJE Nizovi Definicija Niz je
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elma Daferović HIJERARHIJA KONVEKSNIH FUNKCIJA Diplomski rad Voditelj rada
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elma Daferović HIJERARHIJA KONVEKSNIH FUNKCIJA Diplomski rad Voditelj rada: prof. dr. sc. Sanja Varošanec Zagreb, srpanj 218.
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Petar Bakić GEOMETRIJA SHEMA Diplomski rad Voditelj rada: prof. dr. sc. Go
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Petar Bakić GEOMETRIJA SHEMA Diplomski rad Voditelj rada: prof. dr. sc. Goran Muić Zagreb, srpanj 2014. Ovaj diplomski rad obranjen
ВишеSlide 1
OSNOVNI POJMOVI Naredba je uputa računalu za obavljanje određene radnje. Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Pisanje programa zovemo programiranje. Programski jezik
ВишеJMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n
1. (ukupo 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibja 2017. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!) (a) (2 boda) Defiirajte općeitu vajsku mjeru i izmjerivi skup obzirom a dau
ВишеPrimjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2
Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom
ВишеJMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori
1. (ukuno 20 bodova) MJERA I INTEGRAL Poravni isit 7. rujna 2018. (Knjige, bilježnice, dodatni airi i kalkulatori nisu dozvoljeni!) (a) (4 boda) Neka je nerazan sku. Precizno definirajte ojam σ-rstena
Више(Kvantitativne metode odlu\350ivanja \226 problem optimalne zamjene opreme | math.e)
1 math.e Hrvatski matematički elektronički časopis Kvantitativne metode odlučivanja problem optimalne zamjene opreme optimizacija teorija grafova mr. sc. Bojan Kovačić, dipl. ing. matematike, RRiF Visoka
ВишеUvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler
Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija
ВишеProgramiranje 1 drugi kolokvij, 2. veljače Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje,
Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, te službeni podsjetnik. Kalkulatori, mobiteli, razne neslužbene tablice, papiri i sl., nisu dozvoljeni! Sva rješenja napišite
ВишеNeprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14
Neprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14 Jelena Sedlar (FGAG) Neprekidnost 2 / 14 Definicija. Jelena Sedlar (FGAG) Neprekidnost
ВишеSKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.)
SKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.) U kakvom međusobnom položaju mogu biti ravnina i točka?
ВишеMicrosoft Word - 12ms121
Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +
ВишеSveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Ana Vilić Unitarni operatori Završni rad Osije
Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Ana Vilić Unitarni operatori Završni rad Osijek, 2018. Sveučilište J.J. Strossmayera u Osijeku Odjel
ВишеKonstruktivne metode u geometriji prema predavanjima profesora Vladimira Voleneca verzija: 12. lipnja 2019.
Konstruktivne metode u geometriji prema predavanjima profesora Vladimira Voleneca verzija: 12. lipnja 2019. Sadržaj 1 Euklidske konstrukcije 2 1.1 Povijest..................................... 2 1.2 Aksiomi
Више6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe
6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju
ВишеDRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK
RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI
ВишеMicrosoft Word - 24ms221
Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka
ВишеKonstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun
Konstrukcija i analiza algoritama Nina Radojičić februar 2018. 1 Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne funkcije od argumenta n iz skupa N prirodnih brojeva.
ВишеMaksimalni protok kroz mrežu - Ford-Fulkerson, Edmonds-Karp
Maksimalni protok kroz mrežu - Ford-Fulkerson, Edmonds-Karp PMF-MO Seminar iz kolegija Oblikovanje i analiza algoritama 22.1.2019. mrežu - Ford-Fulkerson, Edmonds-Karp 22.1.2019. 1 / 35 Uvod - definicije
ВишеMAT-KOL (Banja Luka) XXIV (2)(2018), DOI: /МК S ISSN (o) ISSN (o) Klasa s
MAT-KOL (Banja Luka) XXIV (2)(2018), 141-146 http://www.imvibl.org/dmbl/dmbl.htm DOI: 10.7251/МК1803141S ISSN 0354-6969 (o) ISSN 1986-5828 (o) Klasa subtangentnih funkcija i klasa subnormalnih krivulja
ВишеMicrosoft Word - 24ms241
Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako
ВишеUvod u statistiku
Uvod u statistiku Osnovni pojmovi Statistika nauka o podacima Uključuje prikupljanje, klasifikaciju, prikaz, obradu i interpretaciju podataka Staistička jedinica objekat kome se mjeri neko svojstvo. Svi
ВишеUDŽBENIK 2. dio
UDŽBENIK 2. dio Pročitaj pažljivo Primjer 1. i Primjer 2. Ova dva primjera bi te trebala uvjeriti u potrebu za uvo - denjem još jedne vrste brojeva. Primjer 1. Živa u termometru pokazivala je temperaturu
ВишеTeorija skupova – predavanja
Sveučilište u Zagrebu PMF Matematički odsjek Mladen Vuković Složenost algoritama predavanja i vježbe 21. ožujka 2019. Predgovor Ovaj nastavni materijal namijenjen je prije svega studentima diplomskog
Вишеs2.dvi
1. Skup kompleksnih brojeva 1. Skupovibrojeva.... Skup kompleksnih brojeva................................. 6. Zbrajanje i množenje kompleksnih brojeva..................... 9 4. Kompleksno konjugirani
ВишеAlgebarske strukture Boris Širola
Algebarske strukture Boris Širola UVOD Cilj ovog kratkog uvoda je prvo, neformalno, upoznavanje sa pojmovima i objektima koji su predmet proučavanja ovog kolegija, od kojih je centralan pojam algebarske
ВишеDiferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod
1 math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod znakom integrala analiza Irfan Glogić, Harun Šiljak When guys at MIT or Princeton had trouble doing a certain integral,
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivan Posavčević IZRAČUNLJIVOST NA SKUPOVIMA Z, Q, R I C Diplomski rad Zagr
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivan Posavčević IZRAČUNLJIVOST NA SKUPOVIMA Z, Q, R I C Diplomski rad Zagreb, rujan 2016. Voditelj rada: doc. dr. sc. Vedran
ВишеDISKRETNA MATEMATIKA
DISKRETNA MATEMATIKA Kombinatorika Permutacije, kombinacije, varijacije, binomna formula Ivana Milosavljević - 1 - 1. KOMBINATORIKA PRINCIPI PREBROJAVANJA Predmet kombinatorike je raspoređivanje elemenata
Више