Név:... osztály:... ÉRETTSÉGI VIZSGA május 8. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00 I. Időtartam: 57 perc Pót
|
|
- Milica Miletić
- пре 6 година
- Прикази:
Транскрипт
1 ÉRETTSÉGI VIZSGA május 8. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00 I. Időtartam: 57 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli vizsga 1712 I. összetevő
2 Важне информације 1. Време за решавање задатака је 57 минута, након његовог истека треба завршити са радом. 2. Редослед решавања задатака је произвољан. 3. Приликом решавања задатака могу се користити дигитрон (који не може да меморише и приказује текстуалне податке) и логаритамске таблице са четвороцифреним бројевима. Коришћење других електронских или писаних помоћних средстава је забрањено! 4. Коначно решење задатка упишите у одговарајуће оквире, решење задатка образложите само онда ако се то у тексту задатка захтева! 5. Задатке пишите хемијском оловком, а слике (скице) можете цртати графитном оловком. Осим цртежа, делове написане графитном оловком наставник неће вредновати (оцењивати). Ако прецртате неко решење или део решења, тај део се неће вредновати. 6. Код сваког задатка се вреднује (оцењује) само једно решење. У случају да покушавате са више решења, једносмислено означите за које решење сте се одлучили! 7. Молимо вас да у сиве правоугаонике ништа не уписујете! 1712 írásbeli vizsga I. összetevő 2 / május 8.
3 1. Пети члан једног аритметичког низа је 7, а осми члан је 1. Одредите разлику низа! Разлика: 2 бода 2. Колико подскупова са два елемента има скуп A = {P; Q; R; S}? Број двочланих подскупова: 2 бода Одреди највећи заједнички делилац за и 2 3! Највећи заједнички делилац: 2 бода 1712 írásbeli vizsga I. összetevő 3 / május 8.
4 4. Одредите логичке вредности (тачно или нетачно) за следеће тврдње! A: Величина унутрашњег угла у једном правилном осмоуглу је 135. B: Пресечна тачка симетрала углова труогла се подудара са центром описане кружнице тог труогла. C: Постоји трапез код којега су сви углови прави. A: B: C: 2 бода 5. График једне функције првог степена пресеца осу x у тачки ( 2), а осу y у тачки 6. Колики је нагиб? Нагиб: 2 бода 1712 írásbeli vizsga I. összetevő 4 / május 8.
5 6. Један фрижидер који оригинално кошта форинта на попусту продају за форинта. За колико процената је цена са попустом нижа од оригиналне цене? Решење детаљно образложите! 2 бода Нижа је за %. 1 бод x 7. Решите једначину у скупу реалних бројева! Решење детаљно образложите! 2 бода x = 1 бод 1712 írásbeli vizsga I. összetevő 5 / május 8.
6 8. За израз 2 a b a ab b 2 одредите замењујућу вредност, ако је a 2 и b 8. Замењујућа вредност: 2 бода 9. Андрија је орочио у банци на пет година форинта са годишњом каматом од 2%. Колико новца ће имати Андрија у банци после пет година? 2 бода 10. Да ли је тачно, да ако је log8 x log2 32, онда је x > ? Образложите свој одговор! 2 бода 1 бод 1712 írásbeli vizsga I. összetevő 6 / május 8.
7 11. Нацртајте график строго монотоне опадајуће функције чија је област дефинисаности [ 5; 3], а скуп вредности [1; 5]. 3 бода 12. Једну правилну коцкицу за играње бацамо два пута. Записујући бројеве које смо добили (према редоследу бацања) добијамо двоцифрени број. Колика је вероватноћа да ћемо добити број који је дељив са 7? Решење детаљно образложите! 3 бода Вероватноћа: 1 бод 1712 írásbeli vizsga I. összetevő 7 / május 8.
8 I део број бодова максималан постигнут 1. задатак 2 2. задатак 2 3. задатак 2 4. задатак 2 5. задатак 2 6. задатак 3 7. задатак 3 8. задатак 2 9. задатак задатак задатак задатак 4 УКУПНО 30 датум наставник који исправља I. rész pontszáma egész számra kerekítve programba elért beírt dátum dátum javító tanár jegyző Megjegyzések: 1. Ha a vizsgázó a II. írásbeli összetevő megoldását elkezdte, akkor ez a táblázat és az aláírási rész üresen marad! 2. Ha a vizsga az I. összetevő teljesítése közben megszakad, illetve nem folytatódik a II. összetevővel, akkor ez a táblázat és az aláírási rész kitöltendő! 1712 írásbeli vizsga I. összetevő 8 / május 8.
9 ÉRETTSÉGI VIZSGA május 8. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00 II. Időtartam: 169 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli vizsga 1712 II. összetevő
10 Важне информације 1. Време за решавање задатака је 169 минута, након његовог истека треба завршити са радом. 2. Редослед решавања задатака је произвољан. 3. У Б делу од три задатка треба решити само два. Након завршетка рада упишите у доњи квадрат редни број задатка који не решавате! Ако наставник који исправља не може једносмислено да утврди за који задатак не желите да се бодује, онда за последњи, 18. задатак нећете добити бодове. 4. Приликом решавања задатака могу се користити дигитрон (који не може да меморише и приказује текстуалне податке) и логаритамске таблице са четвороцифреним бројевима, коришћење других електронских или писаних средстава је забрањено! 5. У сваком случају запишите поступак који сте применили приликом решавања задатака, јер се за то даје значајан део бодова! 6. Трудите се да значајнији делови прорачуна могу да се прате и контролишу! 7. Приликом поступка решавања коришћење дигитрона без даљег математичког образложења се прихвата за извршавање следећих математичких операција: сабирање, одузимање, множење, дељење, степеновање, кореновање, n!, израчунавање n, коришћење података који се налазе у логаритамским таблицама (sin, cos, tg, log k и њихове инверзне функције), давање приближне вредности за бројеве π и e, одређивање корена једначине другог степена сређене на нулу. Без даљег математичког образложења је дозвољено коришћење дигитрона за израчунавање просека и расипања, али само у случају да се текстом задатка искључиво не захтева приказивање детаљних прорачуна у вези тога. У појединим случајевима се прорачуни извршени дигитроном сматрају за кораке без образложења, па се за то не додељују бодови. 8. Међу теоремама које сте користили приликом решавања задатака, оне које сте већ учили у школи и имају свој назив (нпр. Питагорина теорема, теорема о висинама) није потребно тачно објаснити; довољно је споменути назив теореме, али примену треба кратко образложити írásbeli vizsga II. összetevő 2 / május 8.
11 9. Коначно решење задатка (одговор који се даје на постављено питање) наведите и у текстуалном облику! 10. Задатке пишите хемијском оловком, а скице можете цртати обичном (графитном) оловком. Деловe који су писани графитном оловком осим скица наставник који исправља неће оцењивати. Ако прецртате неко решење или део решења, тај део се неће вредновати. 11. Код сваког задатка се вреднује (оцењује) само једно решење. У случају да покушате са више решења, једносмислено означите за које решење сте се одлучили! 12. Молимо вас да у сиве правоугаонике ништа не уписујете! 1712 írásbeli vizsga II. összetevő 3 / május 8.
12 13. Решите следеће једначине у скупу реалних бројева! a) 1 2( x 1) 18 x b) 7 x x 5 A a) 5 бодова b) 7 бодова У.: 12 бодова 1712 írásbeli vizsga II. összetevő 4 / május 8.
13 1712 írásbeli vizsga II. összetevő 5 / május 8.
14 14. На једном тикету за лото-петицу треба означити пет бројева од бројева 1,2,3, Извлачење пет лото бројева је јавно и врши се сваке недеље. Арсеније је ове недеље испунио један тикет. Међу бројевима које су извукли претходне недеље су 6, 9 и 54. Арсеније жели да означи само оне бројеве који нису дељиви ни са 6, а ни са 9. a) Колико бројева може Арсеније да изабере да би испунио тикет? Арсеније гледа извлачење бројеве лотоа са својом ћеркицом Петром која има пет година. Петра жели да сваки од извучених бројева буде барем 5, односно да не буде мањи од пет. b) Колика је вероватноћа да се Петрина жеља оствари? a) 5 бодова b) 5 бодова У.: 10 бодова 1712 írásbeli vizsga II. összetevő 6 / május 8.
15 1712 írásbeli vizsga II. összetevő 7 / május 8.
16 15. a) Израчунајте обим и површину шестоугла који је на слици! b) Израчунајте обим и површину квадра који је на слици AB = 63 cm, BC = 16 cm, BF = 72 cm. Израчунајте угао који заклапа дијагонала квадра CE са страницом ABCD! a) 10 бодова b) 4 бода У.: 14 бодова 1712 írásbeli vizsga II. összetevő 8 / május 8.
17 1712 írásbeli vizsga II. összetevő 9 / május 8.
18 Б Међу задацима треба решити два по слободном избору. Редни број изостављеног задатка упишите у празан квадрат који се налази на страни 2! 16. Шест чланова једне фудбалске екипе су се загревали пре утакмице. Један против другога су играли појединачни ножни тенис. У доњој табели је приказано који играч колико је мечева одиграо против другог. (Нико није играо два пута против истог противника.) играч A B C D E F број мечева a) Да ли је могуће да је играч F одиграо 3 меча, односно против 3 играча? На почетку фудбалске утакмице просечна висина 11 играча који су били на терену је била 186 cm. После замене једног играча просечна висина се повећала на 188 cm. b) За колико центиметара је играч који је ушао у игру виши од играча који је изашао из игре? Током игре један играч је шутнуо лопту, коју нико није додирнуо док није пала на земљу. Функција h( t) 5t 2 15t описује колико високо је лопта у односу на тло, а t означава протекло време од тренутка када је играч шутнуо лопту. (Висину меримо у метрима, а време у секундама.) c) Колико високо је била лопта 1 секунду након што је играч шутнуо? d) Колико дуго је лопта била у ваздуху док није пала на земљу? e) Која је највиша тачка коју је лопта достигла? a) 3 бода b) 4 бода c) 2 бода d) 4 бода e) 4 бода У.: 17 бодова 1712 írásbeli vizsga II. összetevő 10 / május 8.
19 1712 írásbeli vizsga II. összetevő 11 / május 8.
20 Међу задацима треба решити два по слободном избору. Редни број изостављеног задатка упишите у празан квадрат који се налази на страни 2! 17. Знање ђака матураната из координатне геометрије се проверава низом задатака. У првом делу треба да реше један тест који се састоји од шест кратких питања. Уз питања су дата по три одговора од којих је у сваком случају један тачан. a) На колико начина се може испунити тест тако да од шест питања тачан одговор дамо на тачно пет питања? (Код сваког питања смо од три дате могућности означили једну.) У другом делу има осам задатака, од којих ђаци треба да реше два. Од осам задатака три су таква код којих за решавање треба знати одредити пресечне тачке праве. Ема случајно бира која два задатка ће да решава од датих осам задатака. b) Израчунајте која је вероватноћа да од два задатка које је Ема изабрала барем за решавање једног треба знати одредити пресечне тачке праве! У другом делу задатака је био и следећи: У координатном систему је дата права e, као и тачке A и B. Пресликајмо тачку A у односу на праву e, па затим тако добијену тачку A повежимо са тачком B. Пресек праве A B и праве e је тачка Е. Нека су A ( 5; 36), B ( 9; 11), а једначина праве e је x = 3. Одредите координате тачке E! c) Ако је Ема тачно решила овај задатак, колико износи прва, а колико друга координата тачке Е? a) 3 бода b) 6 бодова c) 8 бодова У.: 17 бодова 1712 írásbeli vizsga II. összetevő 12 / május 8.
21 1712 írásbeli vizsga II. összetevő 13 / május 8.
22 Међу задацима треба решити два по слободном избору. Редни број изостављеног задатка упишите у празан квадрат који се налази на страни 2! 18. На једном газдинству косилицом косе травнату површину. У 7 сати ујутро почињу да раде машином која за 8 сати може да покоси целу површину. У 10 сати су почели да се сакупљају облаци, па су зато газде покренули у рад и другу машину која има исти учинак као и прва. Машине раде стално, без прекида. a) У колико сати ће машине завршити кошење целе површине? Осушену траву (сено) сабијају у у бале које имају облик ваљка (цилиндра), па их затим пакују у фолију. И пречник, и висина ваљка су 1,2 метра. Машина која сабија сено у бале (балира) у запремину од 1 m 3 сабије отприлике 160 kg сена. b) Колику тежину у kg има један бала сена? Одговор заокружите на 10 килограма! Функционисање машине за балирање сена испитује контролор узимањем узорака. Том приликом случајно изабере 10 бала и врши мерење пречника основе. Да би приликом контроле машина добила квалификацију задовољава, и средња вредност узорка треба да је у интервалу [118 cm; 122 cm], а дисперзија узорка не сме бити већа од 4 cm. Контролор је измерио следеће вредности приликом узимања узорака: редни број бале пречник (cm) c) Установите да ле ће машина приликом контроле добити квалификацију задовољава! a) 6 бодова b) 5 бодова c) 6 бодова У.: 17 бодова 1712 írásbeli vizsga II. összetevő 14 / május 8.
23 1712 írásbeli vizsga II. összetevő 15 / május 8.
24 II A део II Б део број бодова редни број задатка максималан постигнут укупно изостављени задатак УКУПНО 70 број бодова максималан постигнут I део 30 II део 70 Број бодова писменог дела испита 100 датум наставник који исправља I. rész II. rész pontszáma egész számra kerekítve programba elért beírt dátum dátum javító tanár jegyző 1712 írásbeli vizsga II. összetevő 16 / május 8.
Név:... osztály:... ÉRETTSÉGI VIZSGA május 5. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00 I. Időtartam: 45 perc Pót
ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika
ВишеMicrosoft Word - Matematika_kozep_irasbeli_0911_szerb.doc
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika
ВишеMicrosoft Word - Matematika_emelt_irasbeli_0911_szerb.doc
ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
ВишеAzonosító jel: ÉRETTSÉGI VIZSGA május 9. MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA május 9. 8:00 Időtartam: 240 perc Pótlapok
ÉRETTSÉGI VIZSGA 2017. május 9. MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2017. május 9. 8:00 Időtartam: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli
ВишеMicrosoft Word - Matematika_kozep_irasbeli_1011_horvat.doc
ÉRETTSÉGI VIZSGA 2010. október 19. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 19. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
ВишеMicrosoft Word - Matematika_emelt_irasbeli_0802_szerbH.doc
ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
ВишеMicrosoft Word - Matematika_kozep_irasbeli_jav_utmut0513V28_szerb.doc
Matematika szerb nyelven középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA SZERB NYELVEN МАТЕМАТИКА KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA МАТУРСКИ ИСПИТ СРЕДЊЕГ СТЕПЕНА Az írásbeli vizsga időtartama: 180
ВишеMicrosoft Word - Matematika_kozep_irasbeli_javitasi_0802.doc
Matematika szerb nyelven középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Важне
ВишеMicrosoft Word - mat_szerb_kz_1flap.doc
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA СРЕДЊИ СТЕПЕН I. 45 минута Време за решавање задатака је 45 минута, након његовог истека треба завршити са радом. Редослед решавања задатака је произвољан. Приликом
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеMicrosoft Word - Matematika_kozep_irasbeli_javitasi_1112_szerb.doc
Matematika szerb nyelven középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Формални
ВишеNév:... osztály:... ÉRETTSÉGI VIZSGA május 17. FÖLDRAJZ HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május :00 I. Időtartam: 25 perc P
ÉRETTSÉGI VIZSGA 2019. május 17. FÖLDRAJZ HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2019. május 17. 14:00 I. Időtartam: 25 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2015/
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2015/2016. година УПУТСТВО ЗА РАД Тест који треба да решиш
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеMatematika horvát nyelven középszint Javítási-értékelési útmutató 1712 ÉRETTSÉGI VIZSGA május 8. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI
Matematika horvát nyelven középszint 171 ÉRETTSÉGI VIZSGA 018. május 8. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Važne informacije
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/2014. година УПУТСТВО ЗА РАД Тест који треба да решиш
ВишеMicrosoft Word - Matematika_emelt_irasbeli_javitasi.doc
Matematika szerb nyelven emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA SZERB NYELVEN МАТЕМАТИКА EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA ПИСМЕНИ МАТУРСКИ ИСПИТ ВИШЕГ СТЕПЕНА JAVÍTÁSI-ÉRTÉKELÉSI
ВишеМатематика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }
1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак
ВишеMicrosoft Word - Szerb_nyelv_es_irodalom_kozep_irasbeli_I0511.doc
ÉRETTSÉGI VIZSGA 2005. május 6. SZERB NYELV ÉS IRODALOM KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. SZÖVEGÉRTÉS Időtartam: 60 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Szerb nyelv és irodalom
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година
ВишеMicrosoft Word - Matematika_emelt_irasbeli_javitasi_0911_szerb.doc
Matematika szerb yelve emelt szit 09 ÉRETTSÉGI VIZSGA 0 május 8 MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Важне информације
ВишеMatematika horvát nyelven középszint Javítási-értékelési útmutató 1813 ÉRETTSÉGI VIZSGA május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI
Matematika horvát nyelven középszint 83 ÉRETTSÉGI VIZSGA 09. május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Važne informacije
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година
ВишеMicrosoft Word - Foldrajz_kozep_irasbeli_I0521_horvatH.doc
Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 16. FÖLDRAJZ HORVÁT NYELVEN ZEMLJOPIS 2006. május 16. 14:00 KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA PISMENI ISPIT SREDNJEG STUPNJA I. Időtartam: 20 perc Vrijeme
ВишеМинистарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ Општинско такмичење из математике ученика основних школа III
25.02.2017 III разред 1. Број ногу Периних паса је за 24 већи од броја њихових глава. Колико паса има Пера? 2. На излет су кренула три аутобуса у којима је било укупно 150 ученика. На првом одмору је из
ВишеRepublika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA ZAVRŠNI ISPIT NA KRAJU OSNOVN
Republika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školska 2016/2017. godina TEST
ВишеMicrosoft Word - Szerb_nyelv_es_irodalom_kozep_irasbeli_0803.doc
ÉRETTSÉGI VIZSGA 2010. május 10. SZERB NYELV ÉS IRODALOM KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. május 10. 8:00 I. SZÖVEGÉRTÉS Időtartam: 60 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 018/019. година ТЕСТ МАТЕМАТИКА
ВишеМатематика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О
1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. Одреди број елемената скупова: а) A = {x x N и x < 5} A = { } n(a) = б) B = {x
ВишеMatematika_kozep_irasbeli_javitasi_1013_horvat
Matematika horvát nyelven középszint 1013 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formalni
ВишеMicrosoft Word - Matematika_kozep_irasbeli_javitasi_0611_horvatH.doc
Matematika horvát nyelven középszint 0611 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA HORVÁT NYELVEN MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA PISMENI ISPIT SREDNJEG STUPNJA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 2018/2019. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД Тест
ВишеШифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП
Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година СЕДМИ РАЗРЕД ТЕСТ СПОСОБНОСТИ
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА
ВишеMicrosoft Word - Fizika_kozep_irasbeli_javitasi_1011_szerb.doc
Fizika szerb nyelven középszint 1011 É RETTSÉGI VIZSGA 010. október 8. FIZIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Радње треба
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА
ВишеNév:... osztály:... ÉRETTSÉGI VIZSGA május 3. SZERB NEMZETISÉGI NYELV ÉS IRODALOM KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 3. 8:00 I. SZÖVEGÉRTÉS
ÉRETTSÉGI VIZSGA 2019. május 3. SZERB NEMZETISÉGI NYELV ÉS IRODALOM KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2019. május 3. 8:00 I. SZÖVEGÉRTÉS ÉS ÉRVELÉS VAGY GYAKORLATI SZÖVEGALKOTÁS Időtartam: 90 perc Pótlapok száma
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 01/01. година ТЕСТ МАТЕМАТИКА
ВишеNév:... osztály:... ÉRETTSÉGI VIZSGA május 23. SZERB NYELV KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 23. 8:00 I. Olvasott szöveg értése Időtartam:
ÉRETTSÉGI VIZSGA 2019. május 23. SZERB NYELV KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2019. május 23. 8:00 I. Olvasott szöveg értése Időtartam: 60 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
ВишеИнформатичка одељења Математика Република Србија Министарство просвете, науке и технолошког развоја Завод за вредновање квалитета образовања и васпита
Република Србија Министарство просвете, науке и технолошког развоја Завод за вредновање квалитета образовања и васпитања ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
ВишеМ А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према свој
М А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према својствима (6; 2 + 4) Природни бројеви до 100 (144; 57
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 018/019. година МАТЕМАТИКА
ВишеPRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti
PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00
ВишеAzonosító jel: ÉRETTSÉGI VIZSGA május 25. SZERB NYELV EMELT SZINTŰ ÍRÁSBELI VIZSGA május 25. 8:00 I. Olvasott szöveg értése Időtartam: 70
ÉRETTSÉGI VIZSGA 2018. május 25. SZERB NYELV EMELT SZINTŰ ÍRÁSBELI VIZSGA 2018. május 25. 8:00 I. Olvasott szöveg értése Időtartam: 70 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА О
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
ВишеMicrosoft Word - 1_Uputstvo-za-ocenjivanje_ZI-2018_Matematika Jun.doc
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 017/018. година ТЕСТ МАТЕМАТИКА
ВишеШифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП
Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ
ВишеRepublika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školska
Republik Srbij MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školsk 2017/2018. godin TEST MATEMATIKA UPUTSTVO ZA RAD Test
ВишеМатематика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје
1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX
ВишеMicrosoft Word - inicijalni test 2013 za sajt
ИНИЦИЈАЛНИ ТЕСТ ИЗ МАТЕМАТИКЕ ЗА УЧЕНИКЕ ПРВОГ РАЗРЕДА ЗЕМУНСКЕ ГИМНАЗИЈЕ шк. 13 14. Циљ Иницијални тест за ученике првог разреда Земунске гимназије организован је с циљем увида у предзнање ученика, тј.
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година
ВишеNév:... osztály:... ÉRETTSÉGI VIZSGA május 3. HORVÁT NEMZETISÉGI NYELV ÉS IRODALOM KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 3. 8:00 I. Szövegérté
ÉRETTSÉGI VIZSGA 2019. május 3. HORVÁT NEMZETISÉGI NYELV ÉS IRODALOM KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2019. május 3. 8:00 I. Szövegértés és érvelés vagy gyakorlati szövegalkotás Időtartam: 90 perc Pótlapok
ВишеMATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29
MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri
ВишеЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА
ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
ВишеMicrosoft Word - Biologia_kozep_irasbeli_javitasi_0822_szerb.doc
Biológia szerb nyelven középszint 0822 ÉRETTSÉGI VIZSGA 2012. május 15. BIOLÓGIA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Упутство
Више8. razred kriteriji pravi
KRITERIJI OCJENJIVANJA MATEMATIKA 8. RAZRED Učenik će iz nastavnog predmeta matematike biti ocjenjivan usmeno i pismeno. Pismeno ocjenjivanje: U osmom razredu piše se šest ispita znanja i bodovni prag
ВишеMicrosoft Word - vodic B - konacna
VODIČ B za škole za srednje stručno obrazovanje i obuku školska 2015./2016. godina MATEMATIKA Predmetna komisija: Dina Kamber Maja Hrbat Vernesa Mujačić Mirsad Dumanjić Sadržaj Uvod... 1 Obrazovni ishodi
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година
ВишеMicrosoft Word - Szerb_nyelv_emelt_irasbeli_1212.doc
ÉRETTSÉGI VIZSGA 2012. október 19. SZERB NYELV EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 19. 14:00 I. Olvasott szöveg értése Időtartam: 70 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
ВишеAzonosító jel: ÉRETTSÉGI VIZSGA május 26. SZERB NYELV EMELT SZINTŰ ÍRÁSBELI VIZSGA május 26. 8:00 I. Olvasott szöveg értése Időtartam: 70
ÉRETTSÉGI VIZSGA 2014. május 26. SZERB NYELV EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 26. 8:00 I. Olvasott szöveg értése Időtartam: 70 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
ВишеNév:... osztály:... ÉRETTSÉGI VIZSGA május 22. FIZIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 22. 8:00 Időtartam: 120 perc Pótlapo
ÉRETTSÉGI VIZSGA 2017. május 22. FIZIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2017. május 22. 8:00 Időtartam: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli
ВишеFizika szerb nyelven középszint Javítási-értékelési útmutató 1511 ÉRETTSÉGI VIZSGA május 17. FIZIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI
Fizika szerb nyelven középszint 1511 ÉRETTSÉGI VIZSGA 016. május 17. FIZIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Матурски радови
ВишеПрва економска школа Београд РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ СТАТИСТИКЕ март године ОПШТЕ ИНФОРМАЦИЈЕ И УПУТСТВО ЗА РАД Укупан број такмичарских
Прва економска школа Београд РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ СТАТИСТИКЕ 9-30. март 019. године ОПШТЕ ИНФОРМАЦИЈЕ И УПУТСТВО ЗА РАД Укупан број такмичарских задатака је 10. Број поена за сваки задатак означен је
ВишеMicrosoft Word - Drugi razred mesecno.doc
ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: МАТЕМАТИКА Разред: Други Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. ПРИРОДНИ
Вишеuntitled
ОСНА СИМЕТРИЈА 1. Заокружи слово испред цртежа на коме су приказане две фигуре које су осносиметричне у односу на одговарајућу праву. 2. Нацртај фигуре које су осносиметричне датим фигурама у односу на
ВишеNév:... osztály:... ÉRETTSÉGI VIZSGA május 20. FIZIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 20. 8:00 Időtartam: 150 perc Pótlap
ÉRETTSÉGI VIZSGA 2019. május 20. FIZIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2019. május 20. 8:00 Időtartam: 150 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli
ВишеЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д)
ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = х; б) у = 4х; в) у = х 7; г) у = 5 x; д) у = 5x ; ђ) у = х + х; е) у = x + 5; ж) у = 5 x ; з) у
ВишеVISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E
VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA PO@AREVAC MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, ELEKTROTEHNIKA, MA[INSTVO PO@AREVAC 007 OBAVEZNO PRO^ITATI!
ВишеPEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla
PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla, 3. mart/ožujak 019. godine Prirodno-matematički fakultet
ВишеPitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja
Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar 5. Teorijska pitanja definicija vektora, kolinearni i komplanarni vektori, definicija
ВишеСТЕПЕН појам и особине
СТЕПЕН појам и особине Степен чији је изложилац природан број N R \ 0 изложилац (експонент) основа степен Особине: m m m m : m m : : Примери. 8 4 7 4 5 4 4 5 6 :5 Важно! 5 5 5 5 5 55 5 Основа је број -5
ВишеАлгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (
Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
Више(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)
. B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji
ВишеZadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine
Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto
Више1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1
1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)
ВишеOSNOVNA ŠKOLA, VI RAZRED MATEMATIKA
OSNOVNA ŠKOLA, VI RAZRED MATEMATIKA UPUTSTVO ZA RAD Drage učenice i učenici, Čestitamo! Uspjeli ste da dođete na državno takmičenje iz matematike i samim tim ste već napravili veliki uspjeh Zato zadatke
ВишеMicrosoft Word - Horvat_nyelv_emelt_irasbeli_1211.doc
ÉRETTSÉGI VIZSGA 2013. október 18. HORVÁT NYELV EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 18. 14:00 I. Olvasott szöveg értése Időtartam: 70 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
ВишеMicrosoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc
NULE FUNKCIJE I ZNAK FUNKCIJE NULE FUNKCIJE su mesta gde grafik seče osu a dobijaju se kao rešenja jednačine y= 0 ( to jest f ( ) = 0 ) Mnogi profesori vole da se u okviru ove tačke nadje i presek sa y
ВишеAzonosító jel: ÉRETTSÉGI VIZSGA május 20. FIZIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA május 20. 8:00 Időtartam: 300 perc Pótlapok sz
ÉRETTSÉGI VIZSGA 2019. május 20. FIZIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2019. május 20. 8:00 Időtartam: 300 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli
ВишеŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI
ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK
ВишеUvod u statistiku
Uvod u statistiku Osnovni pojmovi Statistika nauka o podacima Uključuje prikupljanje, klasifikaciju, prikaz, obradu i interpretaciju podataka Staistička jedinica objekat kome se mjeri neko svojstvo. Svi
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. C. Interval, tvore svi realni brojevi strogo manji od. Interval, 9] tvore svi realni brojevi strogo veći od i jednaki ili manji od 9. Interval [1, 8] tvore svi realni brojevi jednaki ili veći od 1,
ВишеŠkolska 20 /. godina OPERATIVNI PLAN RADA NASTAVNIKA ZA MJESEC SEPTEMBAR Naziv predmeta: MATEMATIKA Razred: II Nedjelјni fond časova: 5 Ocjena ostvare
Školska 20 /. godina OPERATVN PLAN RADA NASTAVNKA ZA MJESEC SEPTEMBAR Naziv predmeta: MATEMATKA Razred: Nedjelјni fond časova: 5 Ocjena ostvarenosti plana i razlozi odstupanja za protekli mjesec: nastavne
ВишеMy_ST_FTNIspiti_Free
ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити
Више1 Ministarstvo za obrazovanje, nauku i mlade KS ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2016/2017. GODINI MATEMATIKA Stručni tim za matematiku:
1 Ministarstvo za obrazovanje, nauku i mlade KS ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2016/2017. GODINI MATEMATIKA Stručni tim za matematiku: Prof. dr. Senada Kalabušić Dragana Paralović, prof.
ВишеMAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S
MAT B MATEMATIKA osnovna razina MAT38.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.
ВишеMicrosoft Word - Foldrajz_kozep_irasbeli_jav_utmut_0513_szerb_modos.doc
Földrajz szerb nyelven középszint 0513 ÉRETTSÉGI VIZSGA 2005. május 18. FÖLDRAJZ SZERB NYELVEN ГЕОГРАФИЈА KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA МАТУРСКИ ИСПИТ СРЕДЊЕГ СТЕПЕНА Az írásbeli vizsga időtartama: 120
ВишеPITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l
PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike
Вишеuntitled
РАЗЛОМЦИ - III ДЕО - РЕШЕЊА МНОЖЕЊЕ И ДЕЉЕЊЕ РАЗЛОМАКА ПРИРОДНИМ БРОЈЕМ. а) + + + + + + = = = ; б) + + + + + + + + + + = = = 8 ; в) 8 + + + + + + + = 8 = = =.. а) = = = ; б) = = = ; 0 0 в) 0 = = = ; г)
ВишеSlide 1
О математичким задацима Математички задаци Зашто? Какви? Математички задаци саставни део учења математике По некима, решавање математичких задатака заузима значајније место у образовању појединца него
ВишеMicrosoft Word - Mat-1---inicijalni testovi--gimnazija
Inicijalni test BR. 11 za PRVI RAZRED za sve gimnazije i jače tehničke škole 1... Dva radnika okopat će polje za šest dana. Koliko će trebati radnika da se polje okopa za dva dana?? Izračunaj ( ) a) x
Више(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)
5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj
ВишеMicrosoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc
задатак. Вектор написати као линеарну комбинацију вектора.. }. } } }. }. } } }. }. } } }. }. } } 9}. }. } } }. }. } } }. }. } } } 9 8. }. } } } 9. }. } } }. }. } } }. }. } } }. }. } } }. }. } } }. }. }
ВишеPLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)
PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove
ВишеРационални Бројеви Скуп рационалних бројева 1. Из скупа { 3 4, 2, 4, 11, 0, , 1 5, 12 3 } издвој подскуп: а) природних бројева; б) целих броје
Рационални Бројеви Скуп рационалних бројева. Из скупа {,,,, 0,,, } издвој подскуп: а) природних бројева; б) целих бројева; в) ненегативних рационалних бројева; г) негативних рационалних бројева.. Запиши
Више