Interpretacija čuda pomoću teorije determinističkog kaosa (Jerko Kolovrat, KBF Split; Marija Todorić, PMF Zagreb) Postoje razne teme koje zaokupljaju

Величина: px
Почињати приказ од странице:

Download "Interpretacija čuda pomoću teorije determinističkog kaosa (Jerko Kolovrat, KBF Split; Marija Todorić, PMF Zagreb) Postoje razne teme koje zaokupljaju"

Транскрипт

1 Interpretacija čuda pomoću teorije determinističkog kaosa (Jerko Kolovrat, KBF Split; Marija Todorić, PMF Zagreb) Postoje razne teme koje zaokupljaju ljudski um i tjeraju ga da prema njima zauzme stav tek nakon opširne misaone refleksije. Među tim temema jest i pojava, događaj koji nazivamo čudom. Razna su tumačenja i shvaćanja čuda. Većina ljudi promatra čudo kroz perspektivu vjere. Međutim, postoje i realisti koji smatraju da se sva čuda mogu objasniti i protumačiti u okviru prirodnih zakona. Ako to sada nije moguće, smatraju da će znanost sigurno napredovati i na koncu protumačiti ono što nam se sada čini nejasnim. Ipak, u ovom ćemo radu promatrati čudo kroz prizmu teologije i fizike i pokazati jedno od mogućih tumačenja čuda kao takvog. Teorija determinističkog kaosa otvara zanimljivu alternativu dosadašnjim interpretacijama Božjih čuda te ostavlja prostor Božjoj izravnoj intervenciji u materijalne procese. Suvremena znanost temelji se na postavci da se dinamički procesi u svakom sustavu u prirodi odvijaju prema određenim prirodnim zakonima. Ti zakoni izražavaju se matematički na način da dobivamo jednadžbe gibanja za pojedini sustav. Ako za dinamički sustav znamo početne uvjete, tj. stanje sustava u nekom početnom trenutku i jednadžbe gibanja, tada u načelu možemo izračunati stanje sustava u bilo kojem budućem trenutku pomoću jednadžbe gibanja, pa su daljnje promjene sustava predvidive. Time ovaj svijet na neki način postaje deterministički jer se uz određeni utjecaj mogu dobiti odgovarajuće posljedice. U takvom determinističkom svijetu nema prostora Božjem utjecaju na buduća zbivanja nakon što je stvoren svijet i prirodni zakoni. 1 Dinamički sustav Pod pojmom dinamičkog sustava podrazumijevamo skup međusobno povezanih elemenata koji doživljavaju promjenu u vremenu. Kako bismo takav sustav opisali matematičkim rječnikom, obilježavamo ga varijablama, parametrima i pripadnim jednadžbama gibanja. Navedimo kao primjer dinamičkog sustava kuglicu na njihalu. Varijable su veličine koje u svakom trenutku opisuju stanje u kojemu se nalazi taj dinamički sustav, pa je primjer toga brzina kuglice na njihalu. S druge strane, parametri su veličine koje opisuju sustav i ne mijenjaju se u vremenu, kao što je masa kuglice ili duljina niti njihala. Jednadžbe gibanja određuju kako 1 Usp. Vladimir Paar, Ivan Golub, Granice znanstvenog determinizma - nove dodirne točke znanosti i religije: hipoteza čovjeku nedostupnog Božjeg djelovanja, u: Nova prisutnost, 1 (2003) 2, 196.

2 se tijekom vremena mijenjaju varijable, odnosno stanje dinamičkog sustava. Ako poznajemo stanje dinamičkog sustava u jednom trenutku, tom jednadžbom možemo dobiti varijable, odnosno stanje sustava u nekom budućem trenutku. 2 Određivanje početnih uvjeta, odnosno stanja sustava u određenom početnom trenutku stoga je bitno kako bismo predvidjeli buduća zbivanja. Vrijednost početnih uvjeta nikad nije moguće odrediti savršeno točno, već uvijek s nekom pogreškom. Što je uređaj za mjerenje precizniji, to je pogreška manja. Ali ni napretkom tehnike ta se pogreška nikada neće moći svesti na nulu. Znanstvenici su dugo vremena pretpostavljali da mala pogreška u izračunu početnih uvjeta nema veliki utjecaj na konačni rezultat jednadžbe gibanja. Približnim poznavanjem početnog stanja sustava i razumijevanjem prirodnog zakona, može se proračunati približno ponašanje sustava, tj. proizvoljno mali utjecaji ne rastu toliko da izazovu proizvoljno velike učinke. Međutim, novija znanstvena istraživanja pokazuju da se to može reći samo za linearne sustave u okviru regularnog režima. Situacija je potpuno drukčija u nelinearnim sustavima 3 koji se ovisno o parametru sustava mogu naći u regularnom i kaotičnom režimu. Za sustav u kaotičnom režimu izvanredno male pogreške (čak i toliko male da se ne mogu izmjeriti) u poznavanju početnih uvjeta imaju drastični utjecaj na matematička rješenja jednadžbe gibanja. To svojstvo u kaotičnom režimu nazivamo ekstremnom osjetljivošću na početne uvjete. Ako rješavamo jednadžbu pomoću računala, on zbog svoje ograničene preciznosti, odnosno memorije, zapravo računa približno zanemarujući znamenke iznad nekog decimalnog mjesta. Za nelinearan sustav u kaotičnom režimu, male kompjutorske greške uzrokuju velike promjene u konačnom računu. Takvi 2 Razmotrimo jednostavan sustav koji se sastoji od jednog tijela koje se giba pod djelovanjem sile. Za opis tog gibanja uzmimo varijablu udaljenosti tijela od ishodišta x(t) koju zovemo položaj tijela. Nadalje, derivacija neke funkcije opisuje kako se funkcija mijenja u vremenu. Položaj je funkcija vremena, a njegovu derivaciju nazivamo brzinom. Ona opisuje kako se položaj mijenja u vremenu v(t) =. Pozitivnom brzinom položaj raste i tijelo se udaljuje, dok se negativnom brzinom položaj smanjuje. Možemo potražiti i derivaciju brzine, odnosno veličinu koja opisuje promjenu brzine u vremenu. Tako dolazimo do akceleracije koja je prva derivacija brzine, odnosno druga derivacija položaja a(t)=. Drugi Newtonov zakon opisuje gibanje tijela na koje djeluje sila F: F = ma, a s ovim izrazom za akceleraciju on postaje m = F. Dobili smo jednadžbu koja sadrži derivacije i stoga ju nazivamo diferencijalna jednadžba. 3 Sustavi mogu biti linearni i nelinearni ovisno o tome kakva je diferencijalna jednadžba koja opisuje ovisnost tog sustava o vremenu. U linearnoj diferencijalnoj jednadžbi veza funkcije i njezinih derivacija je linearna + f = g. U nelinearnoj diferencijalnoj jednadžbi pojavljuju se varijable na neku potenciju veću od 1, tako da je primjer nelinearne diferencijalne jednadžbe + f =g. Elastična sila koja djeluje na tijelo ovisi o položaju tog tijela na način da je F=-kx. Newtonov zakon postaje diferencijalna jednadžba koja opisuje gibanje m = kx. Primijetimo da je diferencijalna jednadžba linearna jer je ovisnost funkcije i njezine druge derivacije linearna. Kad bi jednadžba koja opisuje položaj tijela bila =ax, sustav bi bio nelinearan.

3 događaji nisu deterministički, nisu predvidivi zato i kažemo da su kaotični. Područje znanosti koje istražuje te probleme naziva se deterministički kaos. Budući da stvarni svijet u mnogim aspektima uključuje složene procese koji sadrže segmente u kaotičnom režimu 4, čovjek stoga nikada neće biti u stanju da sagleda i razumije svijet kao deterministički u svojoj cjelini. Računalo s beskonačnom preciznošću i beskonačnom brzinom mogao bi biti samo Bog koji bi dobio točno rješenje jednadžbi gibanja u kaotičnom režimu. Nikada, čak niti u načelu, čovjek neće moći biti svemoguć. Neće moći doći u položaj da igra ulogu Boga pred kojim su sve tajne svijeta jasno raskriljene. 5 Kako bismo bolje razumjeli ovisnost kaotičnog sustava o početnim uvjetima i preciznosti računala potražit ćemo rješenja jednadžbe gibanja za različite parametre i male promjene početnih uvjeta te se uvjeriti da je zbog konačne preciznosti mjerenja nemoguće dobiti pouzdano matematičko rješenje jednadžbi gibanja. Nelinearni sustav: regularni i kaotični režim Sustav, odnosno vrijednost neke varijable, možemo opažati kontinuirano tijekom nekog vremenskog perioda, ali i diskontinuirano gdje se opažanja vrše samo u određenim vremenskim točkama. 6 U drugom slučaju vrijednost varijable u n-tom trenutku označimo s x. Jednadžba gibanja onda opisuje kako se iz vrijednosti varijabli u n-tom trenutku izračunavaju njihove vrijednosti u (n+1)-om trenutku. Iteracija (preslik) je matematička funkcija koja iskazuje x ovisno o x : x = f(x ). Ako je zadana vrijednost varijable na početku x, uzastupnom primjenom iteracije računamo x = f(x ), x = f(x ) itd. Ovakve jednadžbe za diskretne varijable jednostavnije je riješiti od diferencijalnih jednadžbi za kontinuirane varijable, a ovisno radi li se o jednadžbama s linearnim ili s nelinearnim članovima možemo dobiti pojave koje slično karakteriziraju oba tipa jednadžbi. Promotrimo populacijsku jednadžbu: x = rx (1 x ), gdje je r kontrolni parametar sustava ovisan o vanjskim uvjetima. Primijetimo da to možemo napisati kao x = rx rx. U jednadžbi se javlja kvadrat varijable, pa kažemo da se radi o nelinearnoj jednadžbi koja će dati dvije vrste rješenja. Ova jednadžba može opisivati rast populacije koji se usporava kad 4 Mnogi prirodni procesi, kao na primjer atmosferski procesi koji na dulji rok određuju vremenske prilike, ili na primjer procesi u ljudskom mozgu pri misaonim aktivnostima, ili golem broj povezanih biokemijskih oscilatora u imunološkom sustavu čovjeka, često su u kaotičnom režimu. (Ivan Golub, Vladimir Paar, Skriveni Bog, Teovizija, Zagreb, , 27.) 5 Usp. Vladimir Paar, Ivan Golub, Granice znanstvenog determinizma - nove dodirne točke znanosti i religije: hipoteza čovjeku nedostupnog Božjeg djelovanja, Usp. Vladimir Paar, Fizika 4, Školska knjiga, Zagreb, 2006.,

4 dosegne određenu granicu. Pritom je x n omjer broja subjekata u n-tom trenutku i maksimalne moguće populacije, što znači da se vrijednosti x n kreću između 0 i 1. Prvo riješimo jednadžbu tako da je x 0 = 0.9, odnosno populacija je 90% maksimalne moguće populacije te postavimo kontrolni parametar na r = 2.5. Neka računalo računa iterande i pritom svaki put zaokružuje rezultat na 7 decimalnih mjesta i unosi ga u sljedeću iteraciju. Dakle, imamo dvije pogreške u svakom koraku ulazna veličina je približna i u konačnom rezultatu imamo zaokruženu vrijednost. Na Slici 1. prikazani su rezultati za iterande: Slika 1. Vrijednost uzastopnih iteranada za r = 2.5 i x 0 = 0.9 Za ovu vrijednost kontrolnog parametra iterandi su se približili jednom broju Graničnu vrijednost kojoj konvergiraju iterandi porastom rednog broja n zovemo atraktor perioda 1, a sustav je u linearnom režimu. Nadalje, promotrimo rješenja kad se kontrolni parametar poveća na r = 3.79, a vrijednost varijable u početnom trenutku opet iznosi x 0 = 0.9. Slika 2. Vrijednost uzastopnih iteranada za r = 3.79 i x 0 = 0.9

5 Dobivena rješenja ne konvergiraju nekoj vrijednosti, odnosno ne možemo uočiti neki period ponavljanja. Za ovu vrijednost parametra sustav se nije stabilizirao u nekoj vrijednosti, već se pojavio kaotični režim u kojem imamo kaotični atraktor s beskonačno mnogo rješenja. Zanimljivo je promotriti što se događa sa sustavom kad malo promijenimo početni uvjet, tako da on iznosi x 0 = , te usporedimo s već izračunatim vrijednostima na Slici 2. za x 0 = Neka vrijednost kontrolnog parametra ostane r = 3.79 jer je tada sustav u kaotičnom režimu. Slika 3. Usporedba rješenja za x 0 = i x 0 = Za bliske početne uvjete iterandi imaju vrlo sličnu vrijednost na početku, no razlika među njima brzo raste i konačno se u rješenjima ne uočava nikakva sličnost. Sustav u kaotičnom režimu ima izrazitu osjetljivost rezultata na najmanje promjene u početnim uvjetima. Time dolazi do sloma determinizma s obzirom da početnu vrijednost ne možemo nikad izmjeriti posve točno, već s konačnom preciznošću. Prilikom mjerenja početnog uvjeta za dvije bliske vrijednosti koje su u granicama pogreške, dobijemo potpuno različite rezultate. Pritom ne možemo odrediti koja je od izračunatih vremenskih serija točna s obzirom da su obje unutar granica pogreške prilikom mjerenja. Izračunajmo sad vremensku seriju za iste vrijednosti početnog uvjeta i kontrolnog parametra, ali neka računalo ima preciznost od 15 decimalnih mjesta. Usporedimo to s prethodnim rezultatom.

6 n x x Tablica 1. Usporedba rješenja za različite preciznosti računala Vremenske serije pokazuju podudaranje samo za prve članove, dok su vrijednosti viših iteranada potpuno različite i ovise o preciznosti računala. Nijedna izračunata serija nije pravo rješenje s obzirom da će računalo uvijek imati konačnu preciznost te će nakon nekog člana davati nepouzdane vrijednosti. Konačna preciznost računala dovodi do sloma determinizma s obzirom da se kaotična zbivanja nikad neće moći predvidjeti. Samo Bog može izbjeći probleme osjetljivog mjerenja početnih uvjeta te ovisnosti o računalnoj preciznosti što znači da događaji koji su za nas kaotični i nepredvidivi, za Boga postaju deterministički i predvidivi. Stoga se otvara mogućnost Božjoj izravnoj intervenciji u materijalne procese koju čovjek ne može otkriti znanstvenom metodom. Bog može uzrokovati ekstremno male promjene početnih uvjeta ili parametara u kaotičnom režimu te na taj način potpuno promijeniti tijek fizičkih procesa. Čovjek ne može i nikada neće moći znati je li Bog intervenirao u kaotičnom režimu. U svakom slučaju, takva Božja intervencija ne zahtijeva promjenu ili suspeziju prirodnih zakona. Takvo Božje čudo, uzrokovano izravnom Božjom intervencijom, odvijalo bi se potpuno u skladu s poznatim prirodnim zakonima. 7 7 Usp. Vladimir Paar, Ivan Golub, Granice znanstvenog determinizma - nove dodirne točke znanosti i religije: hipoteza čovjeku nedostupnog Božjeg djelovanja, 205.

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija

Више

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka) . B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji

Више

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.

Више

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16 7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

(Microsoft Word - Rje\232enja zadataka)

(Microsoft Word - Rje\232enja zadataka) 1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p Numerička matematika 11. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. predavanje dodatak p. 1/46 Sadržaj predavanja dodatka

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske optike (lom i refleksija svjetlosti). Određivanje žarišne daljine tanke leće Besselovom metodom. Teorijski dio Zrcala i leće su objekti

Више

XIII. Hrvatski simpozij o nastavi fizike Istraživački usmjerena nastava fizike na Bungee jumping primjeru temeljena na analizi video snimke Berti Erja

XIII. Hrvatski simpozij o nastavi fizike Istraživački usmjerena nastava fizike na Bungee jumping primjeru temeljena na analizi video snimke Berti Erja Istraživački usmjerena nastava fizike na Bungee jumping primjeru temeljena na analizi video snimke Berti Erjavec Institut za fiziku, Zagreb Sažetak. Istraživački usmjerena nastava fizike ima veću učinkovitost

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r Sveučilište J.J. Strossmayera Fizika 2 Predložak za laboratorijske vježbe Cilj vježbe Određivanje relativne permitivnosti stakla, plastike, papira i zraka mjerenjem kapaciteta pločastog kondenzatora U-I

Више

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRALI Sastavio: Ante Bilušić Split, rujan 4. 1 Neodredeni

Више

Newtonova metoda za rješavanje nelinearne jednadžbe f(x)=0

Newtonova metoda za rješavanje nelinearne jednadžbe f(x)=0 za rješavanje nelinearne jednadžbe f (x) = 0 Ime Prezime 1, Ime Prezime 2 Odjel za matematiku Sveučilište u Osijeku Seminarski rad iz Matematičkog praktikuma Ime Prezime 1, Ime Prezime 2 za rješavanje

Више

Slide 1

Slide 1 0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,

Више

Microsoft PowerPoint - Odskok lopte

Microsoft PowerPoint - Odskok lopte UTJEČE LI TLAK ZRAKA NA ODSKOK LOPTE? Učenici: Antonio Matas (8.raz.) Tomislav Munitić (8.raz.) Mentor: Jadranka Vujčić OŠ Dobri Kliška 25 21000 Split 1. Uvod Uspjesi naših olimpijaca i održavanje svjetskog

Више

Microsoft Word - V03-Prelijevanje.doc

Microsoft Word - V03-Prelijevanje.doc Praktikum iz hidraulike Str. 3-1 III vježba Prelijevanje preko širokog praga i preljeva praktičnog profila Mali stakleni žlijeb je izrađen za potrebe mjerenja pojedinih hidrauličkih parametara tečenja

Више

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove

Више

ALIP1_udzb_2019.indb

ALIP1_udzb_2019.indb Razmislimo Kako u memoriji računala prikazujemo tekst, brojeve, slike? Gdje se spremaju svi ti podatci? Kako uopće izgleda memorija računala i koji ju elektronički sklopovi čine? Kako biste znali odgovoriti

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. C. Interval, tvore svi realni brojevi strogo manji od. Interval, 9] tvore svi realni brojevi strogo veći od i jednaki ili manji od 9. Interval [1, 8] tvore svi realni brojevi jednaki ili veći od 1,

Више

Microsoft Word - Rjesenja zadataka

Microsoft Word - Rjesenja zadataka 1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji

Више

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www. ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело

Више

Microsoft Word - 24ms221

Microsoft Word - 24ms221 Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka

Више

8. razred kriteriji pravi

8. razred kriteriji pravi KRITERIJI OCJENJIVANJA MATEMATIKA 8. RAZRED Učenik će iz nastavnog predmeta matematike biti ocjenjivan usmeno i pismeno. Pismeno ocjenjivanje: U osmom razredu piše se šest ispita znanja i bodovni prag

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass UVOD I MATEMATIČKI KONCEPTI FIZIKA PSS-GRAD 4. listopada 2017. 1.1 Priroda fizike FIZIKA je nastala iz ljudske težnje da objasni fizički svijet oko nas FIZIKA obuhvaća mnoštvo različitih pojava: planetarne

Више

Toplinska i električna vodljivost metala

Toplinska i električna vodljivost metala Električna vodljivost metala Cilj vježbe Određivanje koeficijenta električne vodljivosti bakra i aluminija U-I metodom. Teorijski dio Eksperimentalno je utvrđeno da otpor ne-ohmskog vodiča raste s porastom

Више

Microsoft Word - 12ms121

Microsoft Word - 12ms121 Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +

Више

UDŽBENIK 2. dio

UDŽBENIK 2. dio UDŽBENIK 2. dio Pročitaj pažljivo Primjer 1. i Primjer 2. Ova dva primjera bi te trebala uvjeriti u potrebu za uvo - denjem još jedne vrste brojeva. Primjer 1. Živa u termometru pokazivala je temperaturu

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba

Више

Elementarna matematika 1 - Oblici matematickog mišljenja

Elementarna matematika 1 - Oblici matematickog mišljenja Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s

Више

9. : , ( )

9.  :  ,    ( ) 9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе

Више

ELEKTRONIKA

ELEKTRONIKA МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

Више

10_Perdavanja_OPE [Compatibility Mode]

10_Perdavanja_OPE [Compatibility Mode] OSNOVE POSLOVNE EKONOMIJE Predavanja: 10. cjelina 10.1. OSNOVNI POJMOVI Proizvodnja je djelatnost kojom se uz pomoć ljudskog rada i tehničkih sredstava predmeti rada pretvaraju u proizvode i usluge. S

Више

Bojenje karti iliti poučak o četiri boje Petar Mladinić, Zagreb Moj djed volio je igrati šah. Uvijek mi je znao zadati neki zanimljiv zadatak povezan

Bojenje karti iliti poučak o četiri boje Petar Mladinić, Zagreb Moj djed volio je igrati šah. Uvijek mi je znao zadati neki zanimljiv zadatak povezan Bojenje karti iliti poučak o četiri boje Petar Mladinić, Zagreb Moj djed volio je igrati šah. Uvijek mi je znao zadati neki zanimljiv zadatak povezan sa šahom. Tako mi je postavio sljedeći problem. Problem.

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifični naboja elektrona (omjer e/me) iz poznatog polumjera putanje elektronske zrake u elektronskoj cijevi, i poznatog napona i jakosti

Више

Microsoft Word - zadaci_19.doc

Microsoft Word - zadaci_19.doc Na temelju sljedećih podataka odgovorite na prva dva pitanja. C = 1000, I = 200, G = 400, X = 300, IM=350 Sve su navedene varijable mjerene u terminima domaćih dobara. 1. Razina potražnje za domaćim dobrima

Више

Microsoft Word - 09_Frenetove formule

Microsoft Word - 09_Frenetove formule 6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog

Више

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху Одређивање коефицијента пригушења у ваздуху помоћу линеарног хармонијског осцилатора Соња Ковачевић 1, Милан С. Ковачевић 2 1 Прва крагујевачка гимназија, Крагујевац, Србија 2 Природно-математички факултет,

Више

Metode psihologije

Metode psihologije Metode psihologije opažanje, samoopažanje, korelacijska metoda, eksperiment Metode služe za istraživanja... Bez znanstvenih istraživanja i znanstvene potvrde, spoznaje i objašnjenja ne mogu postati dio

Више

(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. B. Broj je cijeli broj, tj. pripada skupu cijelih brojeva Z. Skup cijelih brojeva Z je pravi podskup skupa racionalnih brojeva Q, pa je i racionalan broj. 9 4 je očito broj

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,

Више

Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske

Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske smjerove Opće napomene: (i) Sva direktna (neovisna) mjerenja vrijednosti nepoznatih

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. C. Zadani broj očito nije niti prirodan broj niti cijeli broj. Budući da je 3 78 3. = =, 00 5 zadani broj možemo zapisati u obliku razlomka kojemu je brojnik cijeli broj

Више

CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup priro

CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup priro CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup prirodnih brojeva? 4.) Pripada li 0 skupu prirodnih brojeva?

Више

Microsoft Word - 24ms241

Microsoft Word - 24ms241 Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako

Више

CVRSTOCA

CVRSTOCA ČVRSTOĆA 12 TEORIJE ČVRSTOĆE NAPREGNUTO STANJE Pri analizi unutarnjih sila koje se pojavljuju u kosom presjeku štapa opterećenog na vlak ili tlak, pri jednoosnom napregnutom stanju, u tim presjecima istodobno

Више

PowerPoint Presentation

PowerPoint Presentation Keijsko tehnološki fakultet Sveučilišta u Splitu Stručni studij keijske tehnologije i aterijala Stručni studij prehrabene tehnologije Fizika uditorne vježbe 4 Rad i energija. Sudari. Ivica Sorić (Ivica.Soric@fesb.hr)

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1.

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. MJERA I INTEGRAL završni ispit 6. srpnja 208. (Knjige bilježnice dodatni papiri i kalkulatori nisu dozvoljeni!). (8 bodova) Kao na predavanjima za d N sa P d : a b ] a d b d ] : a i b i R a i b i za i

Више

2015_k2_z12.dvi

2015_k2_z12.dvi OBLIKOVANJE I ANALIZA ALGORITAMA 2. kolokvij 27. 1. 2016. Skice rješenja prva dva zadatka 1. (20) Zadano je n poslova. Svaki posao je zadan kao vremenski interval realnih brojeva, P i = [p i,k i ],zai

Више

Орт колоквијум

Орт колоквијум II колоквијум из Основа рачунарске технике I - 27/28 (.6.28.) Р е ш е њ е Задатак На улазе x, x 2, x 3, x 4 комбинационе мреже, са излазом z, долази четворобитни BCD број. Ако број са улаза при дељењу

Више

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi 3. siječnja 0. od 3:00 do 4:00 RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovitelji Sadržaj Zadaci. 4.... Zadaci 5. 0.... 3 od 8 Zadaci. 4. U sljedećim pitanjima na pitanja odgovaraš upisivanjem

Више

MAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S

MAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S MAT B MATEMATIKA osnovna razina MAT38.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) 5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj

Више

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca

Више

Kvantna enkripcija

Kvantna enkripcija 19. studenog 2018. QKD = Quantum Key Distribution Protokoli enkriptirane komunikacije koji koriste tzv. tajni ključ zahtijevaju da on bude poznat isključivo dvjema strankama (pošiljatelju i primatelju

Више

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. 1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako

Више

(Microsoft Word - MATB - kolovoz vi\232a razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz vi\232a razina - rje\232enja zadataka) . D. Izračunajmo vrijednosti svih četiriju izraza pazeći da u izrazima pod A. i B. koristimo radijane, a u izrazima pod C. i D. stupnjeve. Dobivamo: Dakle, najveći je broj sin 9. cos 7 0.9957, sin 9 0.779660696,

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass Kinematika u dvije dimenzije FIZIKA PSS-GRAD 11. listopada 017. PRAVOKUTNI KOORDINATNI SUSTAV U RAVNINI I PROSTORU y Z (,3) 3 ( 3,1) 1 (0,0) 3 1 1 (x,y,z) x 3 1 O ( 1.5,.5) 3 x y z Y X PITANJA ZA PONAVLJANJE

Више

Algebarski izrazi (4. dio)

Algebarski izrazi (4. dio) Dodatna nastava iz matematike 8. razred Algebarski izrazi (4. dio) Aleksandra-Maria Vuković OŠ Gornji Mihaljevec amvukovic@gmail.com 12/21/2010 SADRŽAJ 7. KVADRATNI TRINOM... 3 [ Primjer 18. Faktorizacija

Више

4

4 4.1.2 Eksperimentalni rezultati Rezultati eksperimentalnog istraživanja obrađeni su u programu za digitalno uređivanje audio zapisa (Coll Edit). To je program koji omogućava široku obradu audio zapisa.

Више

Slide 1

Slide 1 OSNOVNI POJMOVI Naredba je uputa računalu za obavljanje određene radnje. Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Pisanje programa zovemo programiranje. Programski jezik

Више

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil

Више

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza

Више

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00

Више

Diferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod

Diferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod 1 math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod znakom integrala analiza Irfan Glogić, Harun Šiljak When guys at MIT or Princeton had trouble doing a certain integral,

Више

Prikaz slike na monitoru i pisaču

Prikaz slike na monitoru i pisaču CRT monitori s katodnom cijevi i LCD monitori na bazi tekućih kristala koji su gotovo istisnuli iz upotrebe prethodno navedene. LED monitori- Light Emitting Diode, zasniva se na elektrodama i diodama koje

Више

s2.dvi

s2.dvi 1. Skup kompleksnih brojeva 1. Skupovibrojeva.... Skup kompleksnih brojeva................................. 6. Zbrajanje i množenje kompleksnih brojeva..................... 9 4. Kompleksno konjugirani

Више

Microsoft PowerPoint - Predavanje3.ppt

Microsoft PowerPoint - Predavanje3.ppt Фрактална геометрија и фрактали у архитектури функционални системи Улаз Низ правила (функција F) Излаз Фрактална геометрија и фрактали у архитектури функционални системи Функционални систем: Улаз Низ правила

Више

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29 MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

Programiranje 2 0. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 0. predavanje p. 1/4

Programiranje 2 0. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 0. predavanje p. 1/4 Programiranje 2 0. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 0. predavanje p. 1/48 Sadržaj predavanja Ponavljanje onog dijela C-a koji

Више

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc)

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc) Zadatak Pokažite, koristeći svojstva esa, da je ( 6 ) 5 Svojstva esa funkcije u točki: Ako je k konstanta, k k c c c f ( ) L i g( ) M, tada vrijedi: c c [ f ( ) ± g( ) ] c c f ( ) ± g( ) L ± M c [ f (

Више

Državna matura iz informatike

Državna matura iz informatike DRŽAVNA MATURA IZ INFORMATIKE U ŠK. GOD. 2013./14. 2016./17. SADRŽAJ Osnovne informacije o ispitu iz informatike Područja ispitivanja Pragovi prolaznosti u 2014./15. Primjeri zadataka po područjima ispitivanja

Више

Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Karolina Novaković Derivacija funkcije i prim

Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Karolina Novaković Derivacija funkcije i prim Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Karolina Novaković Derivacija funkcije i primjene Završni rad Osijek, 2018. Sveučilište J. J. Strossmayera

Више

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru

Више

Optimizacija

Optimizacija Optimizacija 1 / 43 2 / 43 Uvod u optimizaciju Zadana funkcija Uvod u optimizaciju f : R n R Cilj: Naći x, točku minimuma funkcije f : - Problem je jednostavno opisati x = arg min x R n f (x). - Rješavanje

Више

1

1 Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N

Више

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robotika Zagreb, 2014. MODEL PROCESA U PROSTORU STANJA

Више

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Нелинеарно еластично клатно Милан С. Коваче

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Нелинеарно еластично клатно Милан С. Коваче Нелинеарно еластично клатно Милан С. Ковачевић 1, Мирослав Јовановић 2 1 Природно-математички факултет, Крагујевац, Србија 2 Гимназија Јосиф Панчић Бајина Башта, Србија Апстракт. У овом раду је описан

Више

Natjecanje 2016.

Natjecanje 2016. I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka

Више

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka II i III, Pravilnika o načinima, postupcima i elementima

Више

No Slide Title

No Slide Title Statistika je skup metoda za uređivanje, analiziranje i grafičko prikazivanje podataka. statistika???? Podatak je kvantitativna ili kvalitativna vrijednost kojom je opisano određeno obilježje (svojstvo)

Више

vjezbe-difrfv.dvi

vjezbe-difrfv.dvi Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je

Више

Oblikovanje i analiza algoritama 5. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb OAA 2017, 5. pr

Oblikovanje i analiza algoritama 5. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb OAA 2017, 5. pr Oblikovanje i analiza algoritama 5. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb OAA 2017, 5. predavanje p. 1/68 Sadržaj predavanja Nehomogene rekurzije

Више

Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine

Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto

Више

Stručno usavršavanje

Stručno usavršavanje TOPLINSKI MOSTOVI IZRAČUN PO HRN EN ISO 14683 U organizaciji: TEHNIČKI PROPIS O RACIONALNOJ UPORABI ENERGIJE I TOPLINSKOJ ZAŠTITI U ZGRADAMA (NN 128/15, 70/18, 73/18, 86/18) dalje skraćeno TP Čl. 4. 39.

Више

Slide 1

Slide 1 Катедра за управљање системима ТЕОРИЈА СИСТЕМА Предавањe 2: Основни појмови - систем, модел система, улаз и излаз UNIVERSITY OF BELGRADE FACULTY OF ORGANIZATIONAL SCIENCES План предавања 2018/2019. 1.

Више

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако

Више

Ekipno natjecanje Ekipa za 5+ - kategorija MIKRO Pula, Mikro-list 1 BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVOR

Ekipno natjecanje Ekipa za 5+ - kategorija MIKRO Pula, Mikro-list 1 BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVOR Mikro-list BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVORA: 0 BODOVA. Ako je 5 i 20 onda je? A) 2 B) 3 C) 4 D) 5 2. Koji broj nedostaje? A) 7 B) 6 C) 5 D) 4 3. Zbrojite najveći

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori 1. (ukuno 20 bodova) MJERA I INTEGRAL Poravni isit 7. rujna 2018. (Knjige, bilježnice, dodatni airi i kalkulatori nisu dozvoljeni!) (a) (4 boda) Neka je nerazan sku. Precizno definirajte ojam σ-rstena

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) C Vrijedi jednakost: = 075, pa zaključujemo da vrijedi nejednakost 4 To znači da zadani broj pripada intervalu, 05 < < 05 4 D Riješimo zadanu jednadžbu na uobičajen način: x 7 x + = 0, x, 7 ± ( 7) 4 7

Више

Microsoft Word - DIOFANTSKE JEDNADŽBE ZADACI docx

Microsoft Word - DIOFANTSKE JEDNADŽBE ZADACI docx DIOFANTSKE JEDNADŽBE Jednadžba s dvjema ili više nepoznanica čiji su koeficijenti i rješenja cijeli brojevi naziva se DIOFANTSKA JEDNADŽBA. Linearne diofantske jednadžbe 3" + 7% 8 = 0 nehomogena (s dvjema

Више