Рачунарска интелигенција
|
|
- Lana Smolnikar
- пре 5 година
- Прикази:
Транскрипт
1 Рачунарска интелигенција Генетско програмирање Александар Картељ Ови слајдови представљају прилагођење слајдова: A.E. Eiben, J.E. Smith, Introduction to Evolutionary computing: Genetic programming
2 Генетско програмирање Развијено у Америци 90-тих година, J. Koza Обично се примењује у: машинском учењу (предикција, класификација ) Конкурентан неуронским мрежама и сличним методама Али захтева огромне популације (хиљаде јединки) Релативно спор Специјлане карактеристике: Нелинеарни хромозоми: стабла, графови Мутација могућа, али није неопходна Рачунарска интелигенција - генетско програмирање 2
3 GP техничке карактеристике Репрезентација Укрштање Мутација Селекција родитеља Селекција преживелих Стабло Размена подстабала Случајна промена у дрвету Фитнес сразмерна Генерацијска замена 3 Рачунарска интелигенција - генетско програмирање
4 Уводни пример: одређивање кредитне способности Банка хоће да направи разлику између добрих и лоших кандидата за давање позајмица Потребно је узети у обзир историјске податке ID Број деце Плата Брачни статус ОК? ID Married 0 ID Single 1 ID Divorced 1 Рачунарска интелигенција - генетско програмирање 4
5 Уводни пример: одређивање кредитне способности (2) Могући модел: Општи приступ: IF (број деце = 2) AND (плата > 80000) THEN добар ELSE лош IF формула THEN добар ELSE лош Непозната је формула по којој се одређује? Простор претраге (фенотип) је скуп свих формула Фитнес формуле: проценат добро класификованих примера Природна репрезентација формуле (генотип) је стабло Рачунарска интелигенција - генетско програмирање 5
6 Уводни пример: одређивање кредитне способности (3) IF (број деце = 2) AND (плата > 80000) THEN добар ELSE лош се може представити следећим стаблом: AND = > Број деце 2 Плата Рачунарска интелигенција - генетско програмирање 6
7 Репрезентација стабла Стабла имају способност представљања великог броја формула Аритметичка формула Логичка формула Програм 2 + ( x + 3) y (x true) (( x y ) (z (x y))) i =1; while (i < 20) { i = i +1 } Рачунарска интелигенција - генетско програмирање 7
8 Репрезентација стабла (2) 2 + ( x + 3) y Рачунарска интелигенција - генетско програмирање 8
9 Репрезентација стабла (3) (x true) (( x y ) (z (x y))) Рачунарска интелигенција - генетско програмирање 9
10 Репрезентација стабла (4) i =1; while (i < 20) { i = i +1 } Рачунарска интелигенција - генетско програмирање 10
11 Репрезентација стабла (5) У генетским алгоритмима (GA), еволутивним стратегијама (ES), еволутивном програмирању (EP), хромозоми су линеарне структуре Низови битова Низови целих бројева Низови реалних бројева Пермутације... Стабло-хромозоми су нелинеарне структуре Код GA, ES, EP, величина хромозома је фиксна Стаблау GP могу да имају произвољну дубину и ширину Рачунарска интелигенција - генетско програмирање 11
12 Репрезентација стабла (6) Симболички изрази могу бити дефинисани помоћу Скупа термова T Скупа функција F (са придруженим арностима) Потом се може користити следећа рекурзивна дефиниција: 1. Сваки t T је коректан израз 2. f(e 1,, e n ) је коректан израз ако f F, arity(f)=n и e 1,, e n су коректни изрази 3. Не постоје друге коректне форме израза У општем случају, изрази у GP нису типизирани (сваки f F може узети било који g F као аргумент) Рачунарска интелигенција - генетско програмирање 12
13 Генерисање потомака Поређење: GA користи укрштање И мутацију секвенцијално (случајно) GP користи укрштање ИЛИ мутацију (случајно) Рачунарска интелигенција - генетско програмирање 13
14 GA дијаграм тока GP дијаграм тока Рачунарска интелигенција - генетско програмирање 14
15 Мутација Најчешћи оператор мутације: замени случајно одабрано подстабло новим случајно генерисаним стаблом Рачунарска интелигенција - генетско програмирање 15
16 Мутација (2) Мутација има два параметра: Вероватноћа p m одабира мутације (у супротном укрштање) Вероватноћа одабира унутрашње тачке (корена подстабла) Савет је да p m буде 0 (Koza 92), или јако блиско 0, нпр (Banzhaf et al. 98) Величина детета може да буде већа од величине родитеља Рачунарска интелигенција - генетско програмирање 16
17 Укрштање Најчешћи оператор укрштања: замена два случајно одабрана подстабла између родитеља Укрштање има два параметра: Вероватноћа p c за одабир укрштања (или мутације у супротном) Вероватноћа одабира унутрашње тачке (корена подстабла) као позиције за укрштање код сваког од родитеља Величина детета може да буде већа од величине родитеља Рачунарска интелигенција - генетско програмирање 17
18 Родитељ 1 Родитељ 2 Рачунарска интелигенција - генетско програмирање 18 Дете 1 Дете 2
19 Селекција Селекција родитеља је обично фитнес-сразмерна Селекција у веома великим популацијама Рангирај популацију према фитнесу и подели их у две групе: група 1: најбољих x% популације група 2 осталих (100-x)% 80% операција селекције изврши над групом 1, преосталих 20% над групом 2 За популације величине = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4% Ови проценти су одређени емпиријски Селекција преживелих: Стандардни приступ: генерацијски Модел са стабилним стањем и елитизмом постаје популаран у последње време Рачунарска интелигенција - генетско програмирање 19
20 Иницијализација популације Поставља се максимална дубина стабла D max Балансирани приступ (тежи се ка балансираном стаблу дубине D max ): Чвоорви на дубини d < D max се случајно бирају из скупа функција F Чворови на дубини d = D max се случајно бирају из скупа термова T Ограничени приступ (тежи се ка стаблу ограничене дубине D max ): Чворови на дубини d < D max се случајно бирају из скупа F T Чворови на дубини d = D max се случајно бирају из скупа T Стандардна GP иницијализација: комбиновани приступ који користи и балансирани и ограничени приступ (сваки по пола популације) Рачунарска интелигенција - генетско програмирање 20
21 Приступ заснован на повећавању Bloat = тенденција ка удебљавању, стабла унутар популације током времена расту Дебата у научним истраживањима Сетимо се окамове бритве Потребне су контрамере, e.g. Спречавање употребе оператора који доводе до превелике деце Пенализација превеликих јединки Рачунарска интелигенција - генетско програмирање 21
22 Пример примене: симболичка регресија За дате тачке у R 2, (x 1, y 1 ),, (x n, y n ) Пронаћи функцију f(x) такву да i = 1,, n : f(x i ) = y i Могуће GP решење: Дати функцијски симболи F = {+, -, /, sin, n cos}, и термови T = R {x} 2 Фитнес представља грешку err( f ) = ( f ( x i ) yi ) i= 1 Стандардни оператори Величина популације= 1000, употреба приступа пола-пола Рачунарска интелигенција - генетско програмирање 22
23 Дискусија Да ли се GP: Може користити за еволуцију рачунарских програма? Шта је са другим репрезентацијама поред стабла? Рачунарска интелигенција - генетско програмирање 23
Classroom Expectations
АТ-8: Терминирање производно-технолошких ентитета Проф. др Зоран Миљковић Садржај Пројектовање флексибилних ; Математички модел за оптимизацију флексибилних ; Генетички алгоритми у оптимизацији флексибилних
Microsoft Word - III godina - EA - Metodi vjestacke inteligencije
Школска година 2018/2019. Предмет Методи вјештачке интелигенције Шифра предмета 2284 Студијски програм Електроенергетика и аутоматика Циклус студија Година студија Семестар Број студената Број група за
SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br.349 SIMBOLIČKO DERIVIRANJE UZ POMOĆ GENETSKOG PROGRAMIRANJA Luka Donđivić Z
SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br.349 SIMBOLIČKO DERIVIRANJE UZ POMOĆ GENETSKOG PROGRAMIRANJA Luka Donđivić Zagreb, lipanj, 2008. Sadržaj Uvod...1 Genetsko programiranje...2
Programski jezici i strukture podataka 2018/2019. Programski jezici i strukture podataka Računarske vežbe vežba 10 Zimski semestar 2018/2019. Studijsk
Programski jezici i strukture podataka Računarske vežbe vežba 10 Zimski semestar 2018/2019. Studijski program: Informacioni inženjering Informacioni inženjering 1 Rekurzivne funkcije Binarna stabla Informacioni
Konstrukcija i analiza algoritama vežbe 10 Nina Radojičić 15. decembar Algoritamske strategije - podeli pa vladaj (divide and conquer) Ova stra
Konstrukcija i analiza algoritama vežbe 10 Nina Radojičić 15. decembar 2016 1 Algoritamske strategije - podeli pa vladaj (divide and conquer) Ova strategija rekurzivno razbija problem na 2 ili više potproblema
SVEUČILIŠTE U ZAGREBU
SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Zagreb, 2017. godina. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Mentori: Prof. dr. sc. Dragutin Lisjak,
Школа Ј. Ј. Змај Свилајнац МЕСЕЧНИ ПЛАН РАДА ЗА СЕПТЕМБАР Школска 2018 /2019. Назив предмета: Информатика и рачунарство Разред: 5. Недељни број часова
Школа Ј. Ј. Змај Свилајнац МЕСЕЧНИ ПЛАН РАДА ЗА СЕПТЕМБАР јединице 1. 1. Увод у информатику и рачунарство 1. 2. Oрганизација података на рачунару 1. 3. Рад са текстуалним документима 1. 4. Форматирање
Увод у организацију и архитектуру рачунара 1
Увод у организацију и архитектуру рачунара 2 Александар Картељ kartelj@matf.bg.ac.rs Напомена: садржај ових слајдова је преузет од проф. Саше Малкова Увод у организацију и архитектуру рачунара 2 1 Секвенцијалне
DR DRAGOŚ CVETKOVIC DR SLOBODAN SIMIC DISKRETNA MATEMATIKA MATEMATIKA ZA KOMPJUTERSKE NAUKĘ DRUGO ISPRAYLJENO I PROSIRENO IZDANJE HMUJ
DR DRAGOŚ CVETKOVIC DR SLOBODAN SIMIC DISKRETNA MATEMATIKA MATEMATIKA ZA KOMPJUTERSKE NAUKĘ DRUGO ISPRAYLJENO I PROSIRENO IZDANJE HMUJ Sadrżaj Predgovor Iz predgovora prvoni izdanju knjige "Diskretne mateiuatićke
Neuronske mreže
Neuronske mreže: Genetički algoritmi Prof. dr. sc. Sven Lončarić Fakultet elektrotehnike i računarstva sven.loncaric@fer.hr http://ipg.zesoi.fer.hr 1 Uvod U mnogim primjenama pojavljuje se problem optimizacije
Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica
Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da
ТЕОРИЈА УЗОРАКА 2
ТЕОРИЈА УЗОРАКА 2 12. 04. 13. ВЕЖБАЊА Написати функције за бирање елемената популације обима N у узорак обима n, код простог случајног узорка, користећи алгоритме: Draw by draw procedure for SRS/SRSWOR
ПА-4 Машинско учење-алгоритми машинског учења
ПА-4 Машинско учење-алгоритми машинског учења Машинско учење увод и основни појмови Деф: the desgn and development of algorthms that allow computers to mprove ther performance over tme based on data sensor
PROMENLJIVE, TIPOVI PROMENLJIVIH
PROMENLJIVE, TIPOVI PROMENLJIVIH Šta je promenljiva? To je objekat jezika koji ima ime i kome se mogu dodeljivati vrednosti. Svakoj promenljivoj se dodeljuje registar (memorijska lokacija) operativne memorije
Microsoft Word - AIDA2kolokvijumRsmerResenja.doc
Konstrukcija i analiza algoritama 2 (prvi kolokvijum, smer R) 1. a) Konstruisati AVL stablo od brojeva 100, 132, 134, 170, 180, 112, 188, 184, 181, 165 (2 poena) b) Konkatenacija je operacija nad dva skupa
Inženjering informacionih sistema
Fakultet tehničkih nauka, Novi Sad Inženjering informacionih sistema Dr Ivan Luković Dr Slavica Kordić Nikola Obrenović Milanka Bjelica Dr Jelena Borocki Dr Milan Delić UML UML (Unified Modeling Language)
PowerPoint Presentation
Колоквијум # задатак подељен на 4 питања: теоријска практична пишу се програми, коначно решење се записује на папиру, кодови се архивирају преко сајта Инжењерски оптимизациони алгоритми /3 Проблем: NLP:
Microsoft PowerPoint - 03-Slozenost [Compatibility Mode]
Сложеност алгоритама (Програмирање 2, глава 3, глава 4-4.3) Проблем: класа задатака истог типа Велики број различитих (коректних) алгоритама Величина (димензија) проблема нпр. количина података које треба
Uvod u računarstvo 2+2
Programiranje 2 doc.dr.sc. Goranka Nogo PMF Matematički odsjek, Zagreb Kontakt ured: 228, drugi kat e-mail: nogo@math.hr konzultacije: četvrtak, 12:00-14:00 petak, 11:00-12:00 neki drugi termin, uz prethodni
Tutoring System for Distance Learning of Java Programming Language
Niz (array) Nizovi Niz je lista elemenata istog tipa sa zajedničkim imenom. Redosled elemenata u nizovnoj strukturi je bitan. Konkretnom elementu niza pristupa se preko zajedničkog imena niza i konkretne
Programiranje 2 0. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 0. predavanje p. 1/4
Programiranje 2 0. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 0. predavanje p. 1/48 Sadržaj predavanja Ponavljanje onog dijela C-a koji
Tutoring System for Distance Learning of Java Programming Language
Deklaracija promenljivih Inicijalizacija promenljivih Deklaracija promenljive obuhvata: dodelu simboličkog imena promenljivoj i određivanje tipa promenljive (tip određuje koja će vrsta memorijskog registra
TEORIJA SIGNALA I INFORMACIJA
Multiple Input/Multiple Output sistemi MIMO sistemi Ulazi (pobude) Izlazi (odzivi) u 1 u 2 y 1 y 2 u k y r Obrada=Matematički model Načini realizacije: fizički sistemi (hardware) i algoritmi (software)
3.Kontrlne (upravlja~ke) strukture u Javi
Објектно орјентисано програмирање Владимир Филиповић vladaf@matf.bg.ac.rs Александар Картељ kartelj@matf.bg.ac.rs Низови у програмском језику Јава Владимир Филиповић vladaf@matf.bg.ac.rs Александар Картељ
Slide 1
Statistička analiza u hidrologiji Uvod Statistička analiza se primenjuje na podatke osmatranja hidroloških veličina (najčešće: protoka i kiša) Cilj: opisivanje veze između veličine i verovatnoće njene
P3.2 Paralelno programiranje 2
Paralelno programiranje II Analiza zavisnosti Struktura algoritma Pomoćne strukture Komunikacioni šabloni 1 4 Koraka paralelizacije programa 2 Evo algoritma. Gde je paralelizam? Dekompozicija zadataka
Postavka 2: Osnovni graf algoritmi 1 DISTRIBUIRANI ALGORITMI I SISTEMI Iz kursa CSCE 668 Proleće 2014 Autor izvorne prezentacije: Prof. Jennifer Welch
Postavka 2: Osnovni graf algoritmi 1 DISTRIBUIRANI ALGORITMI I SISTEMI Iz kursa CSCE 668 Proleće 2014 Autor izvorne prezentacije: Prof. Jennifer Welch A1 Slanje svima preko fiksiranog razapinjućeg stabla
Microsoft PowerPoint - 07-DinamickeStrukturePodataka
Динамичке структуре података листа, стек, ред Програмирање 2: глава 6 Динамичке структуре података Динамичка алокација и динамичке структуре података Најзначајније динамичке структуре података листе и
СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто
СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за вектор a (коjи може бити и дужине нула) и неке изометриjе
1. OPĆE INFORMACIJE 1.1. Naziv kolegija Programiranje 1.6. Semestar Nositelj kolegija dr.sc. Bruno Trstenjak, v. pred Bodovna vrijednost
1. OPĆE INFORMACIJE 1.1. Naziv kolegija Programiranje 1.6. Semestar. 1.. Nositelj kolegija dr.sc. Bruno Trstenjak, v. pred. 1.7. Bodovna vrijednost (ECTS) 7 1.3. Suradnici 1.8. Način izvođenja nastave
Tema 8 – Ekspertni sistemi
Fakultet organizacionih nauka Uvod u informacione sisteme Doc. Dr Ognjen Pantelić Sistemi zasnovani na znanju Upravljanje znanjem - Knowledge Management Znanje predstavlja razumevanje određene oblasti,
Microsoft PowerPoint - Programski_Jezik_C_Organizacija_Izvornog_Programa_I_Greske [Compatibility Mode]
Programski jezik C organizacija izvornog programa Prevođenje Pisanje programa izvorni program Prevođenje programa izvršni program Izvršavanje programa rezultat Faze prevođenja Pretprocesiranje Kompilacija
P11.2 Izbor instrukcija, IBURG
Избор инструкција (1/2) Машинска инструкција се може приказати као део стабла међукода, који се назива шаблон стабла (енгл. tree pattern). Избор инструкција је проблем поплочавања стабла међукода минималним
Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
MAZALICA DUŠKA.pdf
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ELEKTROTEHNIČKI FAKULTET Sveučilišni studij OPTIMIRANJE INTEGRACIJE MALIH ELEKTRANA U DISTRIBUCIJSKU MREŽU Diplomski rad Duška Mazalica Osijek, 2014. SADRŽAJ
Електротехнички факултет Универзитета у Београду Катедра за рачунарску технику и информатику Kолоквијум из Интелигентних система Колоквију
Електротехнички факултет Универзитета у Београду 19.11.017. Катедра за рачунарску технику и информатику Kолоквијум из Интелигентних система Колоквијум траје h. Напуштање сале дозвољено је након 1h. Употреба
Državna matura iz informatike
DRŽAVNA MATURA IZ INFORMATIKE U ŠK. GOD. 2013./14. 2016./17. SADRŽAJ Osnovne informacije o ispitu iz informatike Područja ispitivanja Pragovi prolaznosti u 2014./15. Primjeri zadataka po područjima ispitivanja
РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена ) Прва година: ПРВА ГОДИНА - сви сем информатике Име пр
РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена 23.01.2017.) Прва година: ПРВА ГОДИНА - сви сем информатике Име предмета Датум и термин одржавања писменог дела испита
PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste
PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, 5.06.019. godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekstenzija se najčešće koristi za tekstualne datoteke? a)
б) члан: доц. др Илија Лаловић, доцент, Природно математички факултет, Бања Лука, ужа научна област Рачунарске науке в) члан: проф. др Владимир Филипо
б) члан: доц. др Илија Лаловић, доцент, Природно математички факултет, Бања Лука, ужа научна област Рачунарске науке в) члан: проф. др Владимир Филиповић, ванредни професор, Математички факултет, Београд,
Универзитет у Београду Математички факултет Драган Д. Ђурђевић Поређење егзактних и хеуристичких метода за решавање неких оптимизационих проблема Маст
Универзитет у Београду Математички факултет Драган Д. Ђурђевић Поређење егзактних и хеуристичких метода за решавање неких оптимизационих проблема Мастер рад Београд, 2014. Ментор: др Филип Марић, доцент,
PowerPoint Presentation
Data mining kocepti i tehnike Udžbenik: Data Mining: Concepts and Techniques, Jiawei Han, Micheline Kamber Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar Ocjenjivanje: kolokvijumi
Uvod u statistiku
Uvod u statistiku Osnovni pojmovi Statistika nauka o podacima Uključuje prikupljanje, klasifikaciju, prikaz, obradu i interpretaciju podataka Staistička jedinica objekat kome se mjeri neko svojstvo. Svi
I година Назив предмета I термин Вријеме Сала Математика :00 све Основи електротехнике :00 све Програмирање
I година Математика 1 2225 03.10.2019. 15:00 све Основи електротехнике 1 2226 30.09.2019. 15:00 све Програмирање 1 2227 04.10.2019. 15:00 све Основи рачунарске технике 2228 01.10.2019. 15:00 све Социологија
2015_k2_z12.dvi
OBLIKOVANJE I ANALIZA ALGORITAMA 2. kolokvij 27. 1. 2016. Skice rješenja prva dva zadatka 1. (20) Zadano je n poslova. Svaki posao je zadan kao vremenski interval realnih brojeva, P i = [p i,k i ],zai
I година Назив предмета I термин Вријеме II термин Вријеме Сала Математика : :00 све Основи електротехнике
I година Математика 1 2225 20.06.2019. 9:00 04.07.2019. 9:00 све Основи електротехнике 1 2226 17.06.2019. 9:00 01.07.2019. 13:00 све Програмирање 1 2227 21.06.2019. 9:00 05.07.2019. 9:00 све Основи рачунарске
I година Назив предмета I термин Вријеме II термин Вријеме Сала Математика : :00 све Основи електротехнике
I година Математика 1 2225 05.09.2019. 9:00 19.09.2019. 9:00 све Основи електротехнике 1 2226 02.09.2019. 9:00 16.09.2019. 9:00 све Програмирање 1 2227 06.09.2019. 9:00 20.09.2019. 9:00 све Основи рачунарске
I година Назив предмета I термин Вријеме II термин Вријеме Сала Математика : :00 све Основи електротехнике
I година Математика 1 2225 07.02.2019. 9:00 21.02.2019. 9:00 све Основи електротехнике 1 2226 04.02.2019. 9:00 18.02.2019. 9:00 све Програмирање 1 2227 08.02.2019. 9:00 22.02.2019. 9:00 све Основи рачунарске
Pojačavači
Programiranje u fizici Prirodno-matematički fakultet u Nišu Departman za fiziku dr Dejan S. Aleksić Programiranje u fizici dr Dejan S. Aleksić, vanredni profesor Kabinet 307 (treći sprat), lab. za elektroniku
P11.3 Analiza zivotnog veka, Graf smetnji
Поједностављени поглед на задњи део компајлера Међурепрезентација (Међујезик IR) Избор инструкција Додела ресурса Распоређивање инструкција Инструкције циљне архитектуре 1 Поједностављени поглед на задњи
MIP-heuristike (Matheuristike) Hibridi izmedu metaheurističkih i egzaktnih metoda Tatjana Davidović Matematički institut SANU
MIP-heuristike (Matheuristike) Hibridi izmedu metaheurističkih i egzaktnih metoda Tatjana Davidović Matematički institut SANU http://www.mi.sanu.ac.rs/ tanjad (tanjad@mi.sanu.ac.rs) 21. januar 2013. Tatjana
GENETSKI TREND PRINOSA MLEKA I MLEČNE MASTI U PROGENOM TESTU BIKOVA ZA VEŠTAČKO OSEMENJAVANJE
IV SEMINAR ODGAJIVAČKIH ORGANIZACIJA U STOČARSTVU REPUBLIKE SRBIJE HOTEL ĐERDAP TURIST 01.- 04. April 2018. Procena oplemenjivačkih vrednosti u stočarstvu ES( G) h 2 i L r IH Prof. dr Snežana Trivunović,
Microsoft PowerPoint - Bitovi [Compatibility Mode]
Оператори над битовима (Јаничић, Марић: Програмирање 2, тачка 5.6) Оператори за рад са појединачним битовима Само на целобројне аргументе: ~ битовска негација & битовска конјункција (и) битовска (инклузивна)
Skripte2013
Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar
Osnovi programiranja Beleške sa vežbi Smer Računarstvo i informatika Matematički fakultet, Beograd Jelena Tomašević i Sana Stojanović November 7, 2005
Osnovi programiranja Beleške sa vežbi Smer Računarstvo i informatika Matematički fakultet, Beograd Jelena Tomašević i Sana Stojanović November 7, 2005 2 Sadržaj 1 5 1.1 Specifikacija sintakse programskih
I колоквијум из Основа рачунарске технике I СИ- 2017/2018 ( ) Р е ш е њ е Задатак 1 Тачка А Потребно је прво пронаћи вредности функција f(x
I колоквијум из Основа рачунарске технике I СИ- / (...) Р е ш е њ е Задатак Тачка А Потребно је прво пронаћи вредности функција f(x, x, x ) и g(x, x, x ) на свим векторима. f(x, x, x ) = x x + x x + x
Microsoft PowerPoint - C-4-1
Pregled iskaza u C-u Izraz; Iskaz dodele, serijski komponovani iskaz; blok Uslovni iskazi i izrazi; složeno grananje Iterativni iskazi Iskaz dodele Promena vrednosti a = Ψ; Izračunava vrednost izraza Ψ,
Problemi zadovoljavanja ogranicenja.
I122 Osnove umjetne inteligencije Tema:. 7.1.2016. predavač: Darija Marković asistent: Darija Marković 1 I122 Osnove umjetne inteligencije. 2/26 (PZO) Problem zadovoljavanja ograničenja sastoji se od 3
6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe
6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju
SveuĊilište u Zagrebu
SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA DIPLOMSKI RAD br. 1883 Ocjena učinkovitosti asinkronih paralelnih evolucijskih algoritama Bruno Alfirević Zagreb, veljača 2011. i Sažetak Ovaj
УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6
УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ -oбавезна садржина- свака рубрика мора бити попуњена I ПОДАЦИ О КОМИСИЈИ 1. Датум и орган који је именовао
Microsoft Word - VEROVATNOCA II deo.doc
VEROVATNOĆA - ZADAI (II DEO) Klasična definicija verovatnoće Verovatnoća dogañaja A jednaka je količniku broja povoljnih slučajeva za dogañaj A i broja svih mogućih slučajeva. = m n n je broj svih mogućih
Microsoft Word - SIORT1_2019_K1_resenje.docx
I колоквијум из Основа рачунарске технике I СИ- 208/209 (24.03.209.) Р е ш е њ е Задатак f(x, x 2, x 3 ) = (x + x x ) x (x x 2 + x ) + x x 2 x 3 f(x, x 2, x 3 ) = (x + x x ) (x x + (x )) 2 + x + x x 2
Microsoft PowerPoint - PRI2014 KORIGOVANO [Compatibility Mode]
1. Broj bitova koji se jednovremeno prenosi i obrađuje unutar procesora naziva se: a) radni takt b) procesorski kod c) procesorska reč d) procesorski takt 1. Broj bitova koji se jednovremeno prenosi i
Programiranje u C-u ili C++-u Pseudo-slučajni brojevi; Dinamička alokacija memorije 1 ZADACI SA ČASA Zadatak 1 Napraviti funkciju koja generišlučajan
Programiranje u C-u ili C++-u Pseudo-slučajni brojevi; Dinamička alokacija memorije 1 ZADACI SA ČASA Zadatak 1 Napraviti funkciju koja generišlučajan realan broj od 0 i 1. Na standardni izlaz ispisati
06 Poverljivost simetricnih algoritama1
ЗАШТИТА ПОДАТАКА Симетрични алгоритми заштите поверљивост симетричних алгоритама Преглед биће објашњено: коришћење симетричних алгоритама заштите како би се заштитила поверљивост потреба за добрим системом
08 RSA1
Преглед ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције RSA алгоритам Биће објашњено: RSA алгоритам алгоритам прорачунски аспекти ефикасност коришћењем јавног кључа генерисање кључа сигурност проблем
1
Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N
Slide 1
Катедра за управљање системима ТЕОРИЈА СИСТЕМА Предавањe 2: Основни појмови - систем, модел система, улаз и излаз UNIVERSITY OF BELGRADE FACULTY OF ORGANIZATIONAL SCIENCES План предавања 2018/2019. 1.
Microsoft Word - CAD sistemi
U opštem slučaju, se mogu podeliti na 2D i 3D. 2D Prvo pojavljivanje 2D CAD sistema se dogodilo pre više od 30 godina. Do tada su inženjeri koristili table za crtanje (kulman), a zajednički jezik komuniciranja
Kombinatorno testiranje
Kombinatorno testiranje Uvod Na ponašanje aplikacije utiče puno faktora, npr. ulazne vrednosti, konfiguracije okruženja. Tehnike kao što je podela na klase ekvivalencije ili analiza graničnih vrednosti
УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ Бојана Ј. Лазовић Примена метода комбинаторне оптимизације за решавање проблема формирања група у настави
УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ Бојана Ј. Лазовић Примена метода комбинаторне оптимизације за решавање проблема формирања група у настави Докторска дисертација Београд, 2018. UNIVERSITY OF
Računarski praktikum I - Vježbe 11 - Funktori
Prirodoslovno-matematički fakultet Matematički odsjek Sveučilište u Zagrebu RAČUNARSKI PRAKTIKUM I Vježbe 11 - Funktori v2018/2019. Sastavio: Zvonimir Bujanović Funkcijski objekti (funktori) Objekt klase
Slide 1
Merni sistemi u računarstvu, http://automatika.etf.rs/sr/13e053msr Merna nesigurnost tipa A doc. dr Nadica Miljković, kabinet 68, nadica.miljkovic@etf.rs Prezentacija za ovo predavanje je skoro u potpunosti
АНКЕТА О ИЗБОРУ СТУДИЈСКИХ ГРУПА И МОДУЛА СТУДИЈСКИ ПРОГРАМИ МАСТЕР АКАДЕМСКИХ СТУДИЈА (МАС): А) РАЧУНАРСТВО И АУТОМАТИКА (РиА) и Б) СОФТВЕРСКО ИНЖЕЊЕ
АНКЕТА О ИЗБОРУ СТУДИЈСКИХ ГРУПА И МОДУЛА СТУДИЈСКИ ПРОГРАМИ МАСТЕР АКАДЕМСКИХ СТУДИЈА (МАС): А) РАЧУНАРСТВО И АУТОМАТИКА (РиА) и Б) СОФТВЕРСКО ИНЖЕЊЕРСТВО И ИНФОРМАЦИОНЕ ТЕХНОЛОГИЈЕ (СИИТ) У циљу бољег
Funkcije predavač: Nadežda Jakšić
Funkcije predavač: Nadežda Jakšić do sada su korišćene "gotove" funkcije iz standardnih biblioteka (cin, cout...) one su pozivane iz main funkcije koja je glavna funkcija u programu jer izvršavanje programa
P9.1 Dodela resursa, Bojenje grafa
Фаза доделе ресурса Ова фаза се у литератури назива и фазом доделе регистара, при чему се под регистрима подразумева скуп ресурса истог типа. Додела регистара променљивама из графа сметњи се обавља тзв.
Postojanost boja
Korištenje distribucije osvjetljenja za ostvaranje brzih i točnih metode za postojanost boja Nikola Banić 26. rujna 2014. Sadržaj Postojanost boja Ubrzavanje lokalnog podešavanja boja Distribucija najčešćih
Maksimalni protok kroz mrežu - Ford-Fulkerson, Edmonds-Karp
Maksimalni protok kroz mrežu - Ford-Fulkerson, Edmonds-Karp PMF-MO Seminar iz kolegija Oblikovanje i analiza algoritama 22.1.2019. mrežu - Ford-Fulkerson, Edmonds-Karp 22.1.2019. 1 / 35 Uvod - definicije
УНИВЕРЗИТЕТ У БЕОГРАДУ МАШИНСКИ ФАКУЛТЕТ Предмет: КОМПЈУТЕРСКА СИМУЛАЦИЈА И ВЕШТАЧКА ИНТЕЛИГЕНЦИЈА Задатак број: Лист/листова: 1/1 Задатак 5.1 Pостоје
Лист/листова: 1/1 Задатак 5.1 Pостоје софтвери за препознавање бар кодова који знатно олакшавају велики број операција које захтевају препознавање објеката. Слика 1: Приказ свих слова за које је ART-1
LAB PRAKTIKUM OR1 _ETR_
UNIVERZITET CRNE GORE ELEKTROTEHNIČKI FAKULTET STUDIJSKI PROGRAM: ELEKTRONIKA, TELEKOMUNIKACIJE I RAČUNARI PREDMET: OSNOVE RAČUNARSTVA 1 FOND ČASOVA: 2+1+1 LABORATORIJSKA VJEŽBA BROJ 1 NAZIV: REALIZACIJA
PASCAL UVOD 2 II razred gimnazije
PASCAL UVOD 2 II razred gimnazije Upis-ispis 1. Upis Read(a,b); --u jednom redu Readln(a,b); -- nakon upisa prelazi se u novi red 2. Ispis Write(a,b); -- u jednom redu Writeln(a,b); --nakon ispisa prelazi
PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l
PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno
P1.2 Projektovanje asemblera
ПРОЈЕКТОВАЊЕ АСЕМБЛЕРА Асемблер Модули асемблера 1 Дефинисање новог лингвистичког нивоа превођењем Потребан преводилац алат који преводи програм написан на једном језику (на једном лингвистичком нивоу)
JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (
MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija
Microsoft PowerPoint - 10 PEK EMT Logicka simulacija 1 od 2 (2012).ppt [Compatibility Mode]
ij Cilj: Dobiti što više informacija o ponašanju digitalnih kola za što kraće vreme. Metod: - Detaljni talasni oblik signala prikazati samo na nivou logičkih stanja. - Simulirati ponašanje kola samo u
Uvod u takmičarsko programiranje
8. čas Uvod u programiranje - naredbe ciklusa Uvežbavamo naredbe ciklusa, naredbe ponavljanja (loop) https://studio.code.org/s/course2/stage/6/puzzle/3 "Talk is cheap. Show me the code." - Linus Torvalds
Microsoft Word - predavanje8
DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).
ЕКОНОМСКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У ПРИШТИНИ КОСОВСКА МИТРОВИЦА
МАТЕМАТИКА ЗАДАЦИ ЗА ПРИЈЕМНИ ИСПИТ 1. Израчунати вредност израза: а) ; б). 2. Израчунати вредност израза:. 3. Израчунати вредност израза:. 4. Израчунати вредност израза: ако је. 5. Израчунати вредност
Microsoft PowerPoint - 10-Jednodimenzionalni nizovi.ppt [Compatibility Mode]
Osnove programiranja Nizovi Sadržaj Definicija niza Vrste i elementi nizova Deklarisanje nizova Dodele (početne) vrednosti nizovima Jednodimenzionalni nizovi Primeri dodele vrednosti Petlja foreach Nizovi
DETEKCIJA JEZGRI STANICA UZ POMOĆ ALGORITAMA EVOLUCIJSKOG RAČUNANJA
SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br. 5392 DETEKCIJA JEZGRI STANICA UZ POMOĆ ALGORITAMA EVOLUCIJSKOG RAČUNANJA Josip Matak Zagreb, lipanj 2018. ZAHVALA Najveća zahvalu
SRV_1_Problematika_real_time_sistema
SISTEMI REALNOG VREMENA Vanr.prof. Dr. Lejla Banjanović-Mehmedović www.lejla-bm.com.ba Mehmedović 1 Sadržaj predmeta 1. Problematika real-time sistema. Klasifikacije sistema u realnom vremenu. 2. Aplikacije
Programiranje 1 IEEE prikaz brojeva sažetak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2018, IEEE p
Programiranje IEEE prikaz brojeva sažetak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog 208, IEEE prikaz brojeva sažetak p. /4 Sadržaj predavanja IEEE standard
Sveučilište u Zagrebu
SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br. 4833 PRONALAŽENJE STRATEGIJE U IGRAMA S VIŠE IGRAČA UZ POMOĆ EVOLUCIJSKIH ALGORITAMA Ivona Škorjanc Zagreb, lipanj 2017. Sadržaj
Microsoft Word - Seminar[godina]Prezime_Ime.docx
SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA SEMINAR Naslov seminarskog rada Mario Kostelac Voditelj: Domagoj Jakobović Zagreb, travanj, 2012. Sadržaj 1. SAŽETAK... 1 2. UVOD... 2 3. GENETSKI
DISKRETNA MATEMATIKA
DISKRETNA MATEMATIKA Kombinatorika Permutacije, kombinacije, varijacije, binomna formula Ivana Milosavljević - 1 - 1. KOMBINATORIKA PRINCIPI PREBROJAVANJA Predmet kombinatorike je raspoređivanje elemenata
УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6
УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ -oбавезна садржина- свака рубрика мора бити попуњена (сви подаци уписују се у одговарајућу рубрику, а
Uvod u računarstvo 2+2
Ulaz i izlaz podataka Ulaz i izlaz podataka Nakon odslušanog bit ćete u stanju: navesti sintaksu naredbi za unos/ispis znakova znakovnih nizova cijelih brojeva realnih brojeva jednostruke i dvostruke preciznosti
Maretić M., Vrhovski Z., Purković, D. Multikriterijska optimizacija putanje četveropolužnog mehanizma zasnovana na genetičkim algoritmima ISSN
ISSN 1846-6168 UDK 531.1 MULTIKRITERIJSKA OPTIMIZACIJA PUTANJE ČETVEROPOLUŽNOG MEHANIZMA ZASNOVANA NA GENETIČKIM ALGORITMIMA MULTIPLE-CRITERIA OPTIMIZATION OF A FOURBAR MECHANISM TRAJECTORY BASED ON GENETIC
Programiranje 1
Sveučilište u Rijeci ODJEL ZA INFORMATIKU Ulica Radmile Matejčić 2, Rijeka Akademska 2018./2019. godina PROGRAMIRANJE 1 Studij: Preddiplomski studij informatike (jednopredmetni) Godina i semestar: 1. godina,