s2.dvi

Величина: px
Почињати приказ од странице:

Download "s2.dvi"

Транскрипт

1 r t.h en Postotni račun el em Nakon ovog poglavlja moći ćeš: 9 primijeniti računanje s racionalnim brojevima pri rješavanju matematičkih problema i problema iz svakodnevnog života 9 računati vrijednost brojevnih izraza poštujući redoslijed računskih operacija 9 primijeniti postotni račun na obračun PDV-a, carine, promjene i izračuna cijena, opise udjela i druge probleme iz života 9 istražiti različite strategije i pristupe u novim situacijama te između više rješenja izabrati najbolje 9 prepoznati elemente postotnog računa, postotak, postotni iznos i cjelinu u problemskoj situaciji 9 procijeniti što znaš, a što još trebaš naučiti 9 računati nepoznati podatak Oni koji žele znati više moći će: 9 prepoznati i računati osnovnu vrijednost kad je zadana vrijednost promijenjena za postotak 9 razlikovati i objašnjavati bruto i neto plaću i primijeniti postotni račun za izračun neto plaće 9 povezati pojedine sadržaje učenja sa svakodnevnim životom

2 POSTOTNI RAC UN.. Skupovi brojeva Brojeve koji se javljaju pri prebrojavanju objekata iz nas e okoline nazivamo prirodni brojevi. Tako u jednom danu ima 24 sata, u mahuni gras ka ima 9 zrna, u kadu stane 2 litara vode itd. N = {, 2,, 4,...} t.h Brojevi, 24,, 9, 2 u prethodnim rec enicama primjeri su prirodnih brojeva. Skup svih prirodnih brojeva oznac avamo slovom N. r Ponovimo s to znamo o razlic itim skupovima brojeva i rac unskim operacijama s brojevima. en Svaka dva prirodna broja moz emo zbrojiti i pomnoz iti i rezultat je opet prirodan broj. Medutim, pri oduzimanju a b, brojevi a i b ne mogu biti bilo kakvi, nego broj a mora biti vec i ili jednak broju b ako z elimo da rezultat i dalje bude prirodan broj. Ako je a = b, tada je rezultat oduzimanja a a broj nula, a ako je a < b, tada rezultat oduzimanja nije prirodan broj nego, negativan cijeli broj. Svi prirodni brojevi, nula i svi negativni cijeli brojevi c ine skup cijelih brojeva Z. el em Z = {..., 4,, 2,, 0,, 2,, 4,...} Cijele brojeve susrec emo i u svojoj okolini. Tako se tijekom zimskih mjeseci temperatura zraka spus ta ispod 0 C pa postiz e negativne vrijednosti: C, 0 C itd. Najniz a temperatura zraka koja je izmjerena na Zemlji je 89 C i izmjerena je na Antarktici. U geografiji je nulta razina na razini mora i svi objekti koji se nalaze ispod te razine oznac eni su negativnim brojem. Tako je povrs ina Mrtvog mora 40 m ispod morske razine, tj. povrs ina je Mrtvog mora na 40 m. Dolina smrti je na 86 m itd. Vodostaji rijeka u sus nim razdobljima poprimaju negativne vrijednosti; stanje bankovnog rac una moz e biti negativan broj itd. 2

3 .. Skupovi brojeva Želimo li označitidio nekecjeline, upotrijebit ćemorazlomke. Takoponekadkupujemopolovinukruha ili pijemo četvrtinu litre mlijeka. Porez na dodanu vrijednost iznosi četvrtinu osnovne vrijednosti prihoda. Primjera upotrebe razlomaka ima mnogou svakodnevnomživotu. U matematici se ova vrsta brojeva javlja pri računanju jednadžbe ax = b, a, b Z, a 0 čije je rješenje racionalan broj b a. Skup svih racionalnih brojeva označava se sa Q : { a } Q = b : a, b Z, a 0. Racionalni se brojevi mogu zapisati i u decimalnom obliku koji je ili konačan ili beskonačan, ali periodičan. 2 = 0., 00 = 0.0, = = 0., }{{} 4 = }{{} konačan decimalni zapis beskonačan decimalni zapis Ima li broj decimalni zapis koji je beskonačan i neperiodičan, takav broj nazivamo iracionalni broj. Drugim riječima, iracionalni se brojevi ne mogu prikazati u obliku razlomka. Svi racionalni i iracionalni brojevi zajedno čine skup realnih brojeva koji označavamo sa R. Računske operacije iracionalni brojevi Pri računanju s realnim brojevima koristimo nekoliko svojstava operacija zbrajanja i množenja. Zbrajanje i množenje su komutativne računske operacije, tj. a + b = b + a, a b = b a za sve a, b R. Zbrajanje i množenje su asocijativne računskeoperacije, tj. a +(b + c) =(a + b)+c, a (b c) =(a b) c za sve a, b, c R. Zato se u brojevnim izrazima koji sadrže samo zbrajanje ili samo množenje izostavljaju zagrade jer je svejedno kojim poretkom izvodimo računske operacije. PRIMJER. Izračunajmo koristeći komutativnosti asocijativnostoperacija: a) b) a) =( )+200 = = 00. b) =(2 40) 7 = = 7000.

4 POSTOTNI RAČUN 4 Vrijedi distributivnost množenja prema zbrajanju: a (b + c) =a b + a c za sve a, b R. Kad gornju jednakost upotrebljavamo zdesna ulijevo, onda kažemo da smo izlučili a iz pribrojnika ab i ac. PRIMJER 2. Napišimo izraz bez zagrada: 4(a ) (a + )(a + 2). 4(a ) (a+)(a+2)=4a 2 (a 2 +2a+a+2) =4a 2 a 2 2a a 2 = a 2 +a 4. Navedimo još i svojstva računanja s 0 i : 0 + a = a, a = a, a +( a) =0, a a =. suprotan broj recipročan broj Dakle, zbrojimo li bilo koji broj s nulom rezultat je opet taj isti broj. Broj 0 nazivamo neutralni element za zbrajanje. Kodmnoženja slično svojstvo ima broj, jer pomnožimo li neki broj s, rezultat je opet taj broj. Broj se naziva neutralni element za množenje. Oduzimanje se svodi na zbrajanje suprotnog broja, tj. a b = a +( b), a dijeljenje se svodi na množenje djeljenika s recipročnim djeliteljem, tj. a : b = a b = a b. Za umnožak nekoliko jednakih faktora } a a {{... a } koristimo oznaku a n. Broj a n nazivamo n faktora potencija broja a. Ako je eksponent n negativan broj, tada je a n = a n.tako- der, ako je a broj različit od nule, definira se da je a 0 =. I konačno, zapišimo i kojim se redoslijedom obavljaju računske operacije. U brojevnom izrazu sa zagradama: prvo računamo brojevne izraze unutar zagrada od unutarnjih prema vanjskim potenciramo i korjenujemo, redom slijeva udesno množimo i dijelimo, redom slijeva udesno na kraju zbrajamo i oduzimamo, redom slijeva udesno.

5 .. Skupovi brojeva PRIMJER. Izračunajmo: [ ( )] 00 : [ ( )] 00 : 4 = 92 [ ( 00 : 2 )] 00 = 9 [ : 488 ] = 92 [ ] = 92 [ ] 8 = = = 2 2 = 76. PRIMJER 4. Izračunajmo: ( 2 + ) ( 6 7 ) ( 2 + ) ( 6 7 ) = = = 2 = 4 2 ( ) = ZADATCI.. = Izračunaj što kraćim putem: a b c d Obrazloži koja se svojstva koriste kad želimo zadatak riješiti brže nego računanjem slijeva na desno. 2. Izračunaj što brže: a 2 00 b c 2 40 d Obrazloži koja se svojstva koriste kad želimo zadatak riješiti brže nego računanjem slijeva na desno.

6 POSTOTNI RAČUN 6. Upotrebom svojstava zbrajanja i množenja izračunaj: a b c d Izračunaj: a 777 : 7 7 b 46 : + c : + : d 60 : 60 :.. Izračunaj: a b c Izračunaj: a b c ( 9)+6 +( ) d 2 ( 9) 0 ( 28). 7. Izračunaj: a 4 ( )+( ) ( 7) ( 0) b ( 4) ( ) ( 7) ( ) c 6 ( 6 ( 6 + 4)+4)+4 d + 2 ( + 2 ( )+02) Izračunaj: a 2 (0 )+ b (60 4 ) 40 c 8 8 (8 (8 4) 4)+8) :2 d (20 6) : (48 : 2) 70 :. 9. Izračunaj: a 7 + c ( ) 2 2 ( 2 4 ) 2 0. Izračunaj: ( a 2 + ) ( : ) c ( ) : Izračunaj: a ( ) 4 c ( ) b ( ) d ( ( ) ) 4 : 4 : 4. ( b 7 7 ) ( 8 ) 4 d ( 6 : 24 ) b d ( ( ) ) 60 :

7 .2. Postotni račun.2. Postotni račun Kad cjelinu podijelimo na 00 jednakih dijelova, tada je svaki od tih dijelova cjeline ili % cjeline. 00 Dakle, % je stoti dio cjeline. Pet postotaka (ili pet posto) je pet stotnina cjeline, tj. % =. Slično, % = 00 00, 2 % = 2 4, 4 % = Općenito: PRIMJER. Zapišimo zadane brojeve u obliku postotka: 8 00, 4 00, 4,, 0 0.,.2, = 8%, = 4 %, 4 = = 400 %, 0 = = 2 = 2%, 0. = = %,.2 = 20 %, = = 2.8%. PRIMJER 2. Školu pohada učenika, a 26 % njih su učenici drugog razreda. Koliko u školi ima učenika drugog razreda? Zapišemo li 26 % u obliku razlomka, dobivamo Znamo da je od 400 jednako 4, pa je od jednako 26 4 = 04. U školi je 04 učenika drugog razreda = 2.8 % decimalna se točka pomiče za 2 mjesta 7

8 POSTOTNI RAČUN Promotrimo račun u prethodnom primjeru. Računali smo 26 % od 400 i dobili 26 % od 400 = 26 4, atojejednako Kad općenito trebamo izračunati p %odx,izračunat ćemo p % x. Taj se broj zove postotni iznos ioznačava sa y.dakle, Broj x naziva se osnovna vrijednost. Ponekad se u formuli stavlja postotak u obliku razlomka pa formula izgleda ovako: PRIMJER. Od 0 posjetitelja Nacionalnog parka Mljet njih 48 izjavilo je da su preporuku za posjetu tog parka dobili od prijatelja. Koliki je postotak posjetitelja došao na Mljet zbog preporuke prijatelja? Iz zadatka čitamo: 48 je p % od 0. Ovdje je y = 48, x = 0 i p % = y x. p % = 48 0 = 8 2 = = 2 = 2 % % posjetitelja je u Nacionalni park Mljet došlo zbog preporuke prijatelja. PRIMJER 4. Nakon odbitka od % popusta račun za hlače iznosio je 7 kn. Kolika je bila cijena hlača prije popusta? Popust je iznosio %, pa je račun za hlače iznosio 8 % od cijene hlača prije popusta (8 = 00 ). Dakle, imamo ovu računicu: 8 % od x je 7 kn, gdje je x cijena prije popusta x = 7 8 % = = = Cijena hlača prije popusta je bila 420 kn. Promili Osim postotaka upotrebljavamo još i promile. Jedan je promil tisućina cjeline, tj. Želimo li izračunati p 0 /00 od x, upotrijebit ćemo formulu 8

9 .2. Postotni račun Broj y naziva se promilni iznos, a x osnovni iznos. PRIMJER. Jadransko more ima salinitet.7 0 /00. Koliko se soli nalazi u 2000 tona morske vode? Trebamo izračunati.7 0 /00 od je osnovni iznos, a tražimo promilni iznos y. y = p 0 /00 x y =.7 0 / = = U 2000 t morske vode ima 7.4 tona soli. PRIMJER 6..7 = decimalna se točka pomiče za mjesta Promili se upotrebljavaju pri iskazivanju nataliteta i mortaliteta populacije. U jednom je gradu na početku godine bilo 000 stanovnika. Tijekom godine rodeno - je 20 beba. Koliki je bio natalitet te godine? Iz zadatka čitamo: 20 = p 0 /00 od 000, tj. 20 = p 0 / p 0 /00 = = = /00. Natalitet je iznosio /00. PRIMJER 7. Račun smjese S koliko postotnom kiselinom treba pomiješati 0 litara %-tne kiseline da bi se dobila 2 litra 40 %-tne kiseline? U c = 0 l %-tne kiseline ima p c = 0 litara kiseline, a ostalo je voda. 00 Označimo s p 2 postotak druge kiseline. Te druge kiseline imamo c 2 = 2 0 = litara, a u njoj p 2 c 2 = p 2 litara čiste kiseline. 00 Miješanjem tih dviju kiselina ostala je sačuvanakoličina čiste kiseline i to je jednako količini 40 kiseline u 2 litri 40 %-tne, tj l. Dakle, imamo p c + p 2 c 2 = p (c + c 2 ) gdje je p postotak kiseline u smjesi. 9

10 POSTOTNI RAČUN p 2 40 = 2 / p 2 = 840 p 2 = 690 p 2 = 690 p 2 = %. Sličan se račun koristi i za različite druge smjese gdje se umjesto postotka i promila javljaju kune, temperature i dr. PRIMJER 8. Pomiješa li se 20 litara toplije vode s 8 litara hladnije, temperatura smjese je 8 C. Pomiješa li se litara toplije vode s litara hladnije, temperatura nove smjese je 60. C. Kolika je temperatura toplije, a kolika hladnije vode? Označimo sa t i t 2 temperature toplije odnosno hladnije vode. Iz prve rečenice imamo 20t + 8t 2 = 8 (20 + 8). Za drugu smjesu vrijedi t + t 2 = 60. ( + ). Ovo je jedan sustav s dvjema linearnim jednadžbama. Prvu ćemo jednadžbu podijeliti s 4, a drugu s kako bismo dobili manje koeficijente: t + 2t 2 = 406 t + t 2 = 242. Pomnožimo li drugu jednadžbu s ( 2) i zbrojimo s prvom, dobivamo: t = 78, t = 78. Iz druge jednadžbe imamo: t 2 = 242 t = 8. Temperatura toplije vode je 78 C, a hladnije 8 C. PRIMJER 9. Plaća se u 209. godini obračunavala ovako. Ako je zaposlenik u mjesecu zaradio neki bruto iznos novaca, tada se prvo od tog iznosa oduzima 20 % za mirovinsko osiguranje ( % za prvi stup i % za osiguranje u drugom stupu). Zatim se izračunava porezna osnovica koja je jednaka prethodno dobivenom iznosu umanjenom za olakšice. Svaki zaposlenik ima osnovnu olakšicu 800 kn, a oni koji imaju dijete, imaju jošnekeolakšice. 0

11 .2. Postotni račun Od porezne se osnovice izračunava porez na dohodak koji iznosi 24 % od porezne osnovice (ako je osnovica manja od 0000 kn). Zatim se od tog poreza izračunava prirez koji je različit u različitim gradovima. Tako je prirez u Zagrebu 8 %, u Splitu %, a u nekim gradovima 0 %. Neto dohodak koji će zaposlenik primiti na svoj tekući račun jednak je bruto iznosu umanjenom za doprinos za mirovinsko osiguranje te za porez i prirez. Ako je Sunčica u jednom mjesecu imala bruto plaću 0. kn, koliko će novaca dobiti na tekući račun? Sunčica nema djece i živi u Zagrebu. Koliko će kuna njezin poslodavac izdvojiti za njezinu plaću? Označimo sa B bruto dohodak. Doprinos za mirovinsko osiguranje je 20 % od bruta, tj. 0.2 B = Porezna je osnovica O bruto dohodak umanjen za mirovinski doprinos i osnovnu olakšicu, tj. O = B 0.2 B 800 = 0.8 B 800 = kn. Od porezne osnovice računa se porez na dohodak: porez = 24 % od = kn. Prirez je 8 % poreza, tj. prirez je 8 % od = 27. kn. plaća = bruto - mirovinsko - porez - prirez Sunčica će dobiti = 740. kn. Osim što će poslodavac isplatiti bruto dohodak, mora još uplatiti doprinos za zdravstveno osiguranje za Sunčicu koji iznosi 6. % od bruta. Dakle, poslodavacće za njezinu plaću izdvojiti B + 6.%B = kn. ZADATCI.2.. Prepiši u bilježnicu i dopuni tablicu: decimalni broj postotak 2 % 27 % 9.%

12 POSTOTNI RAČUN 2 2. Prepiši u bilježnicu i dopuni tablicu: razlomak postotak 7% 28 % 2 % 7 % Ako treba, rezultat zaokruži na prvu decimalu.. Prepiši u bilježnicu i dopuni tablicu: razlomak 0 2 decimalni broj postotak 0 % % % 4. Izračunaj: a 0 % od 20, 84, 788 b 2 % od 000, 2, 72 c 7 % od 00, 42, Od kojeg broja % iznosi:, 4, 28? Pokušaj izračunati napamet. 6. Od kojeg broja 0 % iznosi: 20, 8, 4? Pokušaj izračunati napamet. 7. Od kojeg broja 20 % iznosi: 4, 200, 200? Rezultat prvo procijeni, a zatim ga izračunaj. 8. Od kojeg broja 6 % iznosi 0, 8, 0? Rezultat prvo procijeni, a zatim ga izračunaj. 9. Koliko postotaka od zadanog broja x iznosi postotni iznos y ako je: a x = 200, y = 4 b x = 700, y = 40 c x = 400, y = 8 d x = 000, y = 00? 0. Cijena litre mlijeka je 6 kn. Kolika je cijena nakon poskupljenja od %?. Cijena bicikla je 200 kn. Kolika je cijena nakon poskupljenja od 4 %? 2. Cijena je košulje bila 240 kn, a zatim je snižena za 0 %. Kolika je cijena nakon sniženja?. Cijena je automobila bila kn, a zatim je snižena za %. Kolika je cijena nakon sniženja? 4. Za koliko je postotaka cijena artikla poskupila ako se povećala s 800 kn na 960 kn?. Za koliko je postotaka cijena cipela pojeftinila ako se snizila s 40 kn na 40 kn? 6. Trgovac je u studenom povisio cijenu svoje robe za 0 %, a zatim je u prosincu snizio za 0 %. Kolika je cijena proizvoda nakon tih promjena, ako je na početku bila 20 kn? 7. Košulja je prvo pojeftinila 20 %, a zatim poskupila 20 %. Kolika joj je bila cijena nakon tih promjena akojenapočetku bila 200 kn? 8. Prvi trgovac poveća cijenu cipela za 0 %, a zatim smanji 0 %. Drugi trgovac snizi cijenu istih cipela za 0 % pa poveća za 0 %. Koji će od njih prodavati cipele po većoj cijeni? 9. Maloprodajna cijena robe je zbroj prodajne cijene (bruto cijena ili veleprodajna) i poreza na dodanu vrijednost (PDV) koji u 209. iznosi 2 %. Ako je prodajna cijena robe 240 kn, kolika joj je maloprodajna cijena? 20. Zlatko je u poljoprivrednom dućanu kupio grablje i motiku te je ukupno platio kn. Kolika je prodajna cijena tih artikala, a koliki je PDV? 2. Na internetskoj stranici jednog autosalona istaknuta je cijena za automobil: 4 00 kn bez PDV-a. Koliko iznosi PDV? Koliko će kupac platiti taj automobil? 22. Anica je u café-baru platila kavu i kavu s mlijekom kn. Ako je taj café-bar u sustavu PDV-a, koliko kuna odlazi u državni proračun u obliku PDV-a?

13 .2. Postotni račun 2. Bruto masa neke robe je zbroj neto mase i tare. Primjerice, ako se 4 kg jabuka nalazi u drvenom sanduku koji ima 0.9 kg, tada je bruto masa tog sanduka s voćem 4.9 kg, neto je 4 kg, a tara je 0.9 kg. bruto = tara + neto Bruto masa robe iznosi 40 kg, a tara je 2 % od bruto mase. Koliko kilograma iznosi neto masa robe? 24. Bruto masa robe iznosi 24 kg, a tara je % od bruto mase. Koliko kilograma iznosi neto masa robe? 2. Tara masa neke robe je 4.2 kg. Kolika je bruto masa robe ako tara iznosi.4 % bruto mase? 26. U razredu ima 6 odličnih učenika što je 20 % ukupnog broja učenika. Koliko ima učenika u razredu? 27. Na kraju drugog razreda učenika postigla su ovaj uspjeh: 8 odličnih, vrlo dobrih, 9 dobrih i dovoljna učenika. Nadi - postotak za svaku skupinu. 28. Cijena proizvoda povećana je za %. Kolika je nova cijena ako je prije povećanja cijena iznosila 40 kn? 29. Cijena proizvoda smanjena je za 2 %. Kolika je nova cijena ako je prije smanjenja iznosila 6 kn? 0. Cijena proizvoda povećana je za 6 % i sad iznosi 600 kn. Kolika je bila cijena prije povećanja?. Cijena proizvoda smanjena je za 20 % i sad iznosi 64 kn. Kolika je bila cijena prije smanjenja? 2. Neka roba ima cijenu 00 kn. Kolika je cijena te robe ako je prvo povećana 0 %, a zatim smanjena 0 %?. Neka roba ima cijenu 00 kn. Kolika je cijena te robe ako je prvo smanjena 0 %, a zatim povećana 0 %? Usporedi rezultat s rezultatom prethodnog zadatka. 4. Nakon povećanja cijena od 2 % stigao je naputak da se cijene moraju vratiti na prvobitnu razinu. Koliko će postotaka iznositi to smanjenje?. Cijena nekog proizvoda prvo je smanjena za 20 %, a zatim povećana za %. Za koliko se postotaka promijenila cijena u odnosu na prvobitnu? 6. Cijena nekog proizvoda prvo je povećana za %, a zatim smanjena za 0 %. Za koliko se postotaka promijenila cijena u odnosu na prvobitnu? 7. Pri plaćanju računa u banci, banka zaračunava proviziju od 2% od iznosa računa. Kolika je provizija ako je iznos računa 660 kn? 8. Pri transportu voća predvida - se gubitak od %. Koliki je predvideni - gubitak za tona voća? 9. Pri transportu voća predviden - je gubitak od %. Pri prijevozu 6 tona voća pokvarilo se 0 kg. Je li taj gubitak u granicama predvidenog? Nabavna cijena robe je 20 kn. Na tu cijenu trgovina zaračunava maržu od 22%, što zajedno s nabavnom cijenom čini prodajnu cijenu bez PDV-a. Na tu se cijenu obračunava PDV od 2%. Kolika je prodajna cijena s PDV-om? 4. Prodajna cijena bez PDV-a neke robe je 460 kn. Kolika je nabavna cijena ako je marža 20%? 42. Prodajna cijena s PDV-om nekog proizvoda je 720 kn. Kolika je nabavna cijena tog proizvoda ako je marža %, a PDV 2%? 4. PDV ili porez na dodanu vrijednost imaju mnoge države. Istraži kolike postotke PDV-a imaju države u okruženju Hrvatske. Ako je veleprodajna cijena automobila kn, koliko će za isti automobil platiti kupac u Hrvatskoj, koliko u Austriji, a koliko u Italiji? 44. Od inozemnog dobavljača kupljena je tkanina, a neto kupovna vrijednost robe iznosila je 000 kn. Carina za tu robu iznosi 9% od nabavne cijene. Koliko iznosi carina? 4. Cijena automobila zajedno s carinom od.% iznosi kn. Kolika je nabavna cijena automobila? 46. Kad se u trgovini kupuju veće količine robe, ponekad se dobije rabat od p %, tj. osnovna se cijena smanji za p %. Lucijan je kupio elektroničkih komponenata u vrijednosti od 6000 kn. Prodavač mu je odobrio rabat od 6 %. Koliko je Lucijan platio tu robu?

14 POSTOTNI RAČUN Tvornica papira za kupovinu većih količina robe odobrava rabat od %. Ako je kupljena roba u vrijednosti 4000 kn, koliki je rabat? 48. U oluji je na automobil palo drvo. Osiguravajuća kuća isplatila je kn kao naknadu štete, a to je 22 % vrijednosti automobila. Kolika je bila vrijednost automobila? 49. Tuča je uništila urod u voćnjaku. Osiguravajuće društvo isplatilo je 7000 kn što iznosi 6 % procijenjene vrijednosti uroda. Kolika je vrijednost uroda? 0. Valerija ima auto-osiguranje i budući da nekoliko godina nije imala štetu na automobilu, ostvarila je bonus od 0% tejenaprošloj registraciji platila 200 kn. U ovoj je godini u automobilskoj nesreći oštetila vozilo i procjenjena je šteta od 200kn. Ako naplati štetu od osiguravajuće kuće, tada će u sljedećoj godini platiti 6 % premije, u godini nakon toga 60 % (ako ne učini još neku dodatnu štetu), u godini iza %, te u sljedećoj godini bi opet došla na bonus od 0 %. Gledano dugoročno, što je Valeriji povoljnije: naplatiti odmah štetu od osiguravajuće kuće i izgubiti maksimalni bonus ili samostalno platiti štetu te sačuvati maksimalni bonus? Kolika bi šteta trebala biti da joj je isplativije drugo rješenje? Prona - dite više informacija o bonusima i malusima kod osiguranja.. Dohodak bruto 2 (ili ukupni trošak poslodavca) formira se tako da se dohodak zaposlenika (tzv. bruto ) uveća za ove doprinose: za zdravstveno osiguranje ( %), za ozljede na radu (0. %),za zapošljavanje (.7%). a Ako je Joškov bruto dohodak kn, koliki mu je bruto 2 dohodak? b Eleonorin bruto 2 dohodak iznosio je kn. Koliki je njezin bruto dohodak? 2. Iz bruto dohotka u I. mirovinski stup uplaćuje se %, a u II. stup %. Iznos novaca koji je preostao nakon tih uplata u mirovinski fond naziva se dohodak. Koliki je Miroslavov bruto ako mu je dohodak kn? Koliko je novaca uplaćeno za Miroslavovo mirovinsko osiguranje?. Jakov je na oročenu štednju kod dvije banke uložio ukupno kn. Banka A ima godišnju kamatnu stopu. %, a banka B. %. Na kraju je godine Jakov dobio 276 kn kamata. Koliko je novaca oročio kod banke A, a koliko kod banke B? 4. Jurica želi oročiti kn na godinu dana. Banka A daje kamatu od.%,alizavodenje - računa uzima nadoknadu od 240kn godišnje. Banka B daje nešto nižu kamatu od.2 %, ali ne naplaćuje nikakvu dodatnu nadoknadu. a U kojoj banci je isplativije staviti novac na štednju? b Koliku svotu novaca Jurica treba oročiti da bi mu bila isplativija štednja u A banci?. Lidija je sklopila Ugovor o djelu na temelju kojeg njezin bruto honorar iznosi 62.8 kn. Koliki joj je neto honorar? Lidija živi u Zagrebu. Pri obračunu porezne osnovice kod Ugovora o djelu doprinosi za mirovinsko osiguranje iznose 0 %, aostaloseračuna kao u Primjeru 9 za obračun plaće. Doprinos za zdravstveno osiguranje koje plaća poslodavac iznosi 7.%. 6. Goran je sklopio Ugovor o djelu uz bruto honorar od 2000 kn. Koliko će novaca dobiti na žiro račun ako živi u Splitu gdje je prirez %? Koliko bi novaca dobio da živi u gradu koji nema prirez? 7. a Bruno koji živi u Krapini (prirez 0 % ), radio je posao za koji je s poslodavcem dogovorio da će dobiti bruto honorar (prema Ugovoru o djelu) od 000 kn. Koliki mu je neto honorar? b Drugom je prilikom Bruno za sličan posao dogovorio honorar u neto iznosu od 420 kn. Je li poslodavcu bilo svejedno radili se o dogovoru za bruto iznos ili za neto iznos? c Bruno se preselio u Zagreb koji ima prirez 8 % i opet je radio sličan posao. Koliko će sada dobiti neto, ako je ugovorio bruto honorar od 000 kn? Što bi mu bilo povoljnije: ugovoriti bruto honorar od 000 kn ili neto od 420 kn? Što je u pojedinoj situaciji povoljnije za poslodavca, tj. u kojem će slučaju poslodavac imati manji trošak?

15 .2. Postotni račun 8. Mirjana je svoju ušte - devinu od ukupno kn dijelom stavila u novčani fond visokog rizika, a dijelom na oročenu štednju. Godišnja kamatna stopa za oročenu štednju iznosi.2%,anovčani je fond ostvario dobit od.4 %. Mirjana je po isteku godine dana ostvarila ukupnu dobit od 800 kn. a Koliki je dio ušte - devine uložila u fond, a koliko na oročenu štednju? b Da je fond poslovao s gubitkom od 2. %, bi li Mirjana u toj godini ostvarila dobit? 9. Jedan je mirovinski fond u 20. godini imao prinos od 6.6 %. Ako je član tog fonda u 20. godini uplatio 6000 kn, koliko iznosi njegov prinos? 60. Država svakom članu dobrovoljnog mirovinskog fonda na kraju godine isplaćuje poticajna sredstva koja iznose % od uplaćenog uloga u fond u prethodnoj kalendarskoj godini ukoliko je taj ulog bio manji ili jednak 000 kn. Ukoliko je godišnji ulog bio veći od 000 kn, tada je poticaj % od 000 kn. Ako je Marinka u 208. godini u mirovinski fond uplatila 400 kn, koliko će dobiti državnih poticajnih sredstava? Alen je u 208. u mirovinski fond uplatio kn. Koliki će iznos državnih poticajnih sredstava on dobiti? 6. Osmisli tekst zadatka u čijem bi se rješavanju pojavio ovaj račun: a 0% 20 = 6 b 24 je % od Popuni tablicu: 6. Popuni tablicu: decimalni broj promil razlomak promil Rezultat prvo procijeni, a zatim ga izračunaj: a 0 /00 od 00 b 2 0 /00 od 2000 c 7 0 /00 od 00 d 2 0 /00 od 40 e 8 0 /00 od 700 f 0 /00 od 240 g.7 0 /00 od 2 h.2 0 /00 od 460 i 0. 0 /00 od Od kojeg broja 0 /00 iznosi: a 42 b 20 c 400 d 2. Rezultat prvo procijeni, a zatim ga izračunaj. 66. Koliko promila od zadanog broja x iznosi zadani broj y ako je a x = 000, y = 4 b x = 2000, y = c x = 400, y = 2 d x = 8000, y = e x = 820, y = f x = , y = 8 g x = 7 28, y = 420 h x = 02, y = U banci je provizija na pojedine usluge 0. %, a u mjenjačnici. 0 /00. Što je povoljnije: promijeniti jednu valutu u drugu u banci ili u mjenjačnici? 68. U 208. poduzeće je imalo dobit 728 kn, a u 209. dobit je bila 900 kn. Koliko promila iznosi povećanje dobiti?

s2.dvi

s2.dvi 1. Skup kompleksnih brojeva 1. Skupovibrojeva.... Skup kompleksnih brojeva................................. 6. Zbrajanje i množenje kompleksnih brojeva..................... 9 4. Kompleksno konjugirani

Више

CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup priro

CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup priro CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup prirodnih brojeva? 4.) Pripada li 0 skupu prirodnih brojeva?

Више

ALIP1_udzb_2019.indb

ALIP1_udzb_2019.indb Razmislimo Kako u memoriji računala prikazujemo tekst, brojeve, slike? Gdje se spremaju svi ti podatci? Kako uopće izgleda memorija računala i koji ju elektronički sklopovi čine? Kako biste znali odgovoriti

Више

7. а) 3 4 ( ) ; б) ( ) ( 2 5 ) ; в) ( ) 3 16 ; г) ( ). 8. а) ( г) ) ( ) ; б)

7. а) 3 4 ( ) ; б) ( ) ( 2 5 ) ; в) ( ) 3 16 ; г) ( ). 8. а) ( г) ) ( ) ; б) 7. а) ( 5 + 5 ) ; б) ( 5 8 5 6 ) ( 2 5 ) ; в) ( 9 + ) 6 ; г) 5 ( 2 + 2 29 ). 8. а) ( г) 2 2 + ) ( + 2 ) ; б) 2 ( + 2 ) + 2 ; в) ( 0 + 5 ) ( 2 ( 7 6 )) ; 7 2 + ( + ( 8 6 ( 2 ) 2 )) ; д) ( 2 5 ( 2 + 7 0

Више

0255_Uvod.p65

0255_Uvod.p65 1Skupovi brojeva Skup prirodnih brojeva Zbrajanje prirodnih brojeva Množenje prirodnih brojeva U košari ima 12 jaja. U drugoj košari nedostaju tri jabuke da bi bila puna, a treća je prazna. Pozitivni,

Више

untitled

untitled РАЗЛОМЦИ - III ДЕО - РЕШЕЊА МНОЖЕЊЕ И ДЕЉЕЊЕ РАЗЛОМАКА ПРИРОДНИМ БРОЈЕМ. а) + + + + + + = = = ; б) + + + + + + + + + + = = = 8 ; в) 8 + + + + + + + = 8 = = =.. а) = = = ; б) = = = ; 0 0 в) 0 = = = ; г)

Више

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

Ekipno natjecanje Ekipa za 5+ - kategorija MIKRO Pula, Mikro-list 1 BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVOR

Ekipno natjecanje Ekipa za 5+ - kategorija MIKRO Pula, Mikro-list 1 BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVOR Mikro-list BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVORA: 0 BODOVA. Ako je 5 i 20 onda je? A) 2 B) 3 C) 4 D) 5 2. Koji broj nedostaje? A) 7 B) 6 C) 5 D) 4 3. Zbrojite najveći

Више

SKRIPTE EKOF 2019/20 skripteekof.com Lekcija 1: Brojevni izrazi Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da nau

SKRIPTE EKOF 2019/20 skripteekof.com Lekcija 1: Brojevni izrazi Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da nau Lekcija : Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o razlomcima proširivanje, skraćivanje, upoređivanje; zapis razlomka u okviru mešovitog

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka) . B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji

Више

Addiko Bank d.d.

Addiko Bank d.d. IZVADAK IZ ODLUKE O VISINI PASIVNIH KAMATNIH STOPA ZA FIZIČKE OSOBE koji se primjenjuje od 31.03.2019. godine 1. OPĆE ODREDBE Ova Odluka o visini pasivnih kamatnih stopa za fizičke osobe (u daljnjem tekstu:

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

Matrice. Algebarske operacije s matricama. - Predavanje I

Matrice. Algebarske operacije s matricama. - Predavanje I Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) 5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

(Microsoft Word - Rje\232enja zadataka)

(Microsoft Word - Rje\232enja zadataka) 1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:

Више

PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije

PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije korake. Uz dobro razrađen algoritam neku radnju ćemo

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. C. Zadani broj očito nije niti prirodan broj niti cijeli broj. Budući da je 3 78 3. = =, 00 5 zadani broj možemo zapisati u obliku razlomka kojemu je brojnik cijeli broj

Више

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove

Више

Microsoft Word - DIOFANTSKE JEDNADŽBE ZADACI docx

Microsoft Word - DIOFANTSKE JEDNADŽBE ZADACI docx DIOFANTSKE JEDNADŽBE Jednadžba s dvjema ili više nepoznanica čiji su koeficijenti i rješenja cijeli brojevi naziva se DIOFANTSKA JEDNADŽBA. Linearne diofantske jednadžbe 3" + 7% 8 = 0 nehomogena (s dvjema

Више

(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. B. Broj je cijeli broj, tj. pripada skupu cijelih brojeva Z. Skup cijelih brojeva Z je pravi podskup skupa racionalnih brojeva Q, pa je i racionalan broj. 9 4 je očito broj

Више

UDŽBENIK 2. dio

UDŽBENIK 2. dio UDŽBENIK 2. dio Pročitaj pažljivo Primjer 1. i Primjer 2. Ova dva primjera bi te trebala uvjeriti u potrebu za uvo - denjem još jedne vrste brojeva. Primjer 1. Živa u termometru pokazivala je temperaturu

Више

untitled

untitled РАЗЛОМЦИ - III ДЕО МНОЖЕЊЕ И ДЕЉЕЊЕ РАЗЛОМАКА ПРИРОДНИМ БРОЈЕМ. Допиши шта недостаје: а) + + + + + + = = = ; б) + + + + + + + + + + = = = ; в) + + + + + + + = = = =.. Попуни празна места тако да добијеш

Више

IZVADAK IZ ODLUKE O VISINI PASIVNIH KAMATNIH STOPA ZA FIZIČKE OSOBE koji se primjenjuje od godine 1. OPĆE ODREDBE Ova Odluka o visini pasi

IZVADAK IZ ODLUKE O VISINI PASIVNIH KAMATNIH STOPA ZA FIZIČKE OSOBE koji se primjenjuje od godine 1. OPĆE ODREDBE Ova Odluka o visini pasi IZVADAK IZ ODLUKE O VISINI PASIVNIH KAMATNIH STOPA ZA FIZIČKE OSOBE koji se primjenjuje od 31.12.2015. godine 1. OPĆE ODREDBE Ova Odluka o visini pasivnih kamatnih stopa za fizičke osobe (u daljnjem tekstu:

Више

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc)

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc) Zadatak Pokažite, koristeći svojstva esa, da je ( 6 ) 5 Svojstva esa funkcije u točki: Ako je k konstanta, k k c c c f ( ) L i g( ) M, tada vrijedi: c c [ f ( ) ± g( ) ] c c f ( ) ± g( ) L ± M c [ f (

Више

MAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S

MAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S MAT B MATEMATIKA osnovna razina MAT38.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.

Више

(Microsoft PowerPoint - Predavanja za recenziju-sa rije\232enim zadacima.pptx)

(Microsoft PowerPoint - Predavanja za recenziju-sa rije\232enim zadacima.pptx) OPOREZIVANJE PODUZEĆA Predavanje 17.05.2018. DRUGI DOHODAK 1 TEMELJNE ODREDNICE DRUGOG DOHOTKA Drugi dohodak predstavlja razliku između svakog pojedinačnog primitka što se ne smatra dohotkom od nesamostalnog

Више

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29 MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

М А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према свој

М А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према свој М А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према својствима (6; 2 + 4) Природни бројеви до 100 (144; 57

Више

8. razred kriteriji pravi

8. razred kriteriji pravi KRITERIJI OCJENJIVANJA MATEMATIKA 8. RAZRED Učenik će iz nastavnog predmeta matematike biti ocjenjivan usmeno i pismeno. Pismeno ocjenjivanje: U osmom razredu piše se šest ispita znanja i bodovni prag

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

Obrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI

Obrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI Obrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI PODATCI Ime i prezime Zvanje Naziv škole u kojoj ste

Више

ЕКОНОМСКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У ПРИШТИНИ КОСОВСКА МИТРОВИЦА

ЕКОНОМСКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У ПРИШТИНИ КОСОВСКА МИТРОВИЦА МАТЕМАТИКА ЗАДАЦИ ЗА ПРИЈЕМНИ ИСПИТ 1. Израчунати вредност израза: а) ; б). 2. Израчунати вредност израза:. 3. Израчунати вредност израза:. 4. Израчунати вредност израза: ако је. 5. Израчунати вредност

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

Рационални Бројеви Скуп рационалних бројева 1. Из скупа { 3 4, 2, 4, 11, 0, , 1 5, 12 3 } издвој подскуп: а) природних бројева; б) целих броје

Рационални Бројеви Скуп рационалних бројева 1. Из скупа { 3 4, 2, 4, 11, 0, , 1 5, 12 3 } издвој подскуп: а) природних бројева; б) целих броје Рационални Бројеви Скуп рационалних бројева. Из скупа {,,,, 0,,, } издвој подскуп: а) природних бројева; б) целих бројева; в) ненегативних рационалних бројева; г) негативних рационалних бројева.. Запиши

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza

Више

UAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević

UAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture5. Vektorski prostori 2 5.1 Unutarnja i vanjska množenja Imamo dvije vrste algebarskih operacija, tzv. unutarnja

Више

atka 26 (2017./2018.) br. 102 NEKE VRSTE DOKAZA U ČAROBMATICI Jadranka Delač-Klepac, Zagreb jednoj smo priči spomenuli kako je važno znati postavljati

atka 26 (2017./2018.) br. 102 NEKE VRSTE DOKAZA U ČAROBMATICI Jadranka Delač-Klepac, Zagreb jednoj smo priči spomenuli kako je važno znati postavljati NEKE VRSTE DOKAZA U ČAROBMATICI Jadranka Delač-Klepac, Zagreb jednoj smo priči spomenuli kako je važno znati postavljati prava pitanja. U Jednako je važno znati pronaći odgovore na postavljena pitanja,

Више

Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razredu Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razr

Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razredu Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razr Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razredu ODLIČAN (5) navodi primjer kuta kao dijela ravnine omeđenog polupravcima analizira i uspoređuje vrh i krakove kuta analizira

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. C. Interval, tvore svi realni brojevi strogo manji od. Interval, 9] tvore svi realni brojevi strogo veći od i jednaki ili manji od 9. Interval [1, 8] tvore svi realni brojevi jednaki ili veći od 1,

Више

Microsoft Word - Rjesenja zadataka

Microsoft Word - Rjesenja zadataka 1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji

Више

REPUBLIKA HRVATSKA MINISTARSTVO FINANCIJA POREZNA UPRAVA PODRUČNI URED Zagreb Obrazac DOH ISPOSTAVA Centar 1. OPĆI PODACI PRIJAVA POREZA NA DOHODAK ZA

REPUBLIKA HRVATSKA MINISTARSTVO FINANCIJA POREZNA UPRAVA PODRUČNI URED Zagreb Obrazac DOH ISPOSTAVA Centar 1. OPĆI PODACI PRIJAVA POREZA NA DOHODAK ZA REPUBLIKA HRVATSKA MINISTARSTVO FINANCIJA POREZNA UPRAVA PODRUČNI URED Zagreb Obrazac DOH ISPOSTAVA Centar OPĆI PODACI PRIJAVA POREZA NA ZA 00. GODINU IME I PREZIME/IME RODITELJA: Ivo Ivić / Josip ADRESA:

Више

Microsoft Word - z4Ž2018a

Microsoft Word - z4Ž2018a 4. razred - osnovna škola 1. Izračunaj: 52328 28 : 2 + (8 5320 + 5320 2) + 4827 5 (145 145) 2. Pomoću 5 kružića prikazano je tijelo gusjenice. Gusjenicu treba obojiti tako da dva kružića budu crvene boje,

Више

Microsoft Word - Obrazac DOH.doc

Microsoft Word - Obrazac DOH.doc REPUBLIKA HRVATSKA MINISTARSTVO FINANCIJA, POREZNA UPRAVA PODRUČNI URED ISPOSTAVA Obrazac DOH PRIJAVA POREZA NA ZA GODINU OPĆI PODACI IME I PREZIME / IME RODITELJA: ADRESA (mjesto, ulica i kućni broj):

Више

MATEMATIKA IZVEDBENI GODIŠNJI NASTAVNI PLAN I PROGRAM MATEMATIKE OSNOVNA ŠKOLA, 2. razred šk. god Planirala: Višnja Špicar, učitelj RN

MATEMATIKA IZVEDBENI GODIŠNJI NASTAVNI PLAN I PROGRAM MATEMATIKE OSNOVNA ŠKOLA, 2. razred šk. god Planirala: Višnja Špicar, učitelj RN IZVEDBENI GODIŠNJI NASTAVNI PLAN I PROGRAM MATEMATIKE OSNOVNA ŠKOLA, 2. razred šk. god. 2014.-15. Uvodni sat (1 sat) Ponavljanje: Rujan 14 sati Tijela u prostoru, Geometrijski likovi (1 sat) Točka, ravna

Више

Microsoft Word - примјер

Microsoft Word - примјер ПОПУЊАВАЊЕ ГОДИШЊЕ ПОРЕСКЕ ПРИЈАВЕ ЗА 04. годину, обрасци 004 и 005. Примјер. Физичко лице, Петар Петровић је у 04. години по основу запослења код послодавца А остварило нето плату у износу од 4.440,00

Више

Microsoft Word - 1. REALNI BROJEVI- formulice

Microsoft Word - 1. REALNI BROJEVI- formulice REALNI BROJEVI Skup prirodnih brojeva je N={1,2,3,4,,6,7, } Ako skupu prirodnih brojeva dodamo i nulu onda imamo skup N 0 ={0,1,2,3, } Skup celih brojeva je Z = {,-3,-2,-1,0,1,2,3, } Skup racionalnih brojeva

Више

10_Perdavanja_OPE [Compatibility Mode]

10_Perdavanja_OPE [Compatibility Mode] OSNOVE POSLOVNE EKONOMIJE Predavanja: 10. cjelina 10.1. OSNOVNI POJMOVI Proizvodnja je djelatnost kojom se uz pomoć ljudskog rada i tehničkih sredstava predmeti rada pretvaraju u proizvode i usluge. S

Више

Математика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје

Математика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX

Више

PRIMJER KAMATA BUGARSKA Hrvatski porezni obveznik samostalno podnosi obrazac INO-DOH. On je na osnova ugovora o zajmu posudio sredstva bugarskom trgov

PRIMJER KAMATA BUGARSKA Hrvatski porezni obveznik samostalno podnosi obrazac INO-DOH. On je na osnova ugovora o zajmu posudio sredstva bugarskom trgov PRIMJER KAMATA BUGARSKA Hrvatski porezni obveznik samostalno podnosi obrazac INO-DOH. On je na osnova ugovora o zajmu posudio sredstva bugarskom trgovačkom društvu te je stvarni korisnik kamata koje mu

Више

Microsoft Word - 24ms221

Microsoft Word - 24ms221 Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka

Више

Microsoft Word - 12ms121

Microsoft Word - 12ms121 Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +

Више

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI

Више

Matematički leksikon

Matematički leksikon OŠ SIDE KOŠUTIĆ RADOBOJ MATEMATIČKI LEKSIKON Radoboj, 2012. OŠ SIDE KOŠUTIĆ RADOBOJ MATEMATIČKI LEKSIKON PROJEKT Predmet : Matematika Mentor: Ivica Švaljek Radoboj, 2012. godina Matematički leksikon OŠ

Више

Microsoft Word - 1.Operacije i zakoni operacija

Microsoft Word - 1.Operacije i zakoni operacija 1. Operacije i zakoni operacija Neka je S neprazan skup. Operacija dužine n skupa S jeste svako preslikavanje : n n f S S ( S = S S S... S) Ako je n = 1, onda operaciju nazivamo unarna. ( f : S S ) Ako

Више

Microsoft Word - Mat-1---inicijalni testovi--gimnazija

Microsoft Word - Mat-1---inicijalni testovi--gimnazija Inicijalni test BR. 11 za PRVI RAZRED za sve gimnazije i jače tehničke škole 1... Dva radnika okopat će polje za šest dana. Koliko će trebati radnika da se polje okopa za dva dana?? Izračunaj ( ) a) x

Више

MathFest 2016 Krapinsko zagorske županije 29. travnja Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje

MathFest 2016 Krapinsko zagorske županije 29. travnja Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje MathFest 2016 Krapinsko zagorske županije 29. travnja 2016. Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje 90 minuta. Zadatci (njih 32) podijeljeni su u dvije

Више

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година СЕДМИ РАЗРЕД ТЕСТ СПОСОБНОСТИ

Више

Algebarski izrazi (4. dio)

Algebarski izrazi (4. dio) Dodatna nastava iz matematike 8. razred Algebarski izrazi (4. dio) Aleksandra-Maria Vuković OŠ Gornji Mihaljevec amvukovic@gmail.com 12/21/2010 SADRŽAJ 7. KVADRATNI TRINOM... 3 [ Primjer 18. Faktorizacija

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) C Vrijedi jednakost: = 075, pa zaključujemo da vrijedi nejednakost 4 To znači da zadani broj pripada intervalu, 05 < < 05 4 D Riješimo zadanu jednadžbu na uobičajen način: x 7 x + = 0, x, 7 ± ( 7) 4 7

Више

rifin1.pdf

rifin1.pdf NASTANAK NOVCA 1. NASTANAK NOVCA Primarna je tema ove knjige vremenska vrijednost novca. Pokušat ćemo istražiti odnos novca i vremena. Što je to novac? Odakle dolazi? Kako je nastao? Što učiniti da novac

Више

No Slide Title

No Slide Title IZRAČUNAVANJE CIJENA I PRINOSA HARTIJA OD VRIJEDNOSTI Cijena koju je investitor spreman da plati za bilo koji finansijski instrument predstavlja sadašnju vrijednost očekivanog budućeg neto novčanog toka

Више

os07zup-rjes.dvi

os07zup-rjes.dvi RJEŠENJA ZA 4. RAZRED OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI

Више

Obrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI

Obrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI Obrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI PODATCI Ime i prezime Zvanje Naziv škole u kojoj ste

Више

Teorija skupova - blog.sake.ba

Teorija skupova - blog.sake.ba Uvod Matematika je jedan od najomraženijih predmeta kod većine učenika S pravom, dakako! Zapitajmo se šta je uzrok tome? Da li je matematika zaista toliko teška, komplikovana? Odgovor je jednostavan, naravno

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Maja Cundić PROGRESIVNOST U OPOREZIVANJU DOHOTKA OD RADA U ZEMLJAMA EU - H

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Maja Cundić PROGRESIVNOST U OPOREZIVANJU DOHOTKA OD RADA U ZEMLJAMA EU - H SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Maja Cundić PROGRESIVNOST U OPOREZIVANJU DOHOTKA OD RADA U ZEMLJAMA EU - HRVATSKA, ITALIJA, IRSKA, NIZOZEMSKA ŠPANJOLSKA Diplomski

Више

Osnovice za obračun doprinosa za Milivoj Friganović, mag. oec. Ministar financija za svako obračunsko razdoblje kalendarsku godinu Naredbom obja

Osnovice za obračun doprinosa za Milivoj Friganović, mag. oec. Ministar financija za svako obračunsko razdoblje kalendarsku godinu Naredbom obja Osnovice za obračun a za 2015. Ministar financija za svako obračunsko razdoblje kalendarsku godinu Naredbom objavljuje iznose osnovica za obračun a (koje su propisane kao umnožak iznosa prosječne plaće

Више

Državno natjecanje / Osnove informatike Srednje škole Zadaci U sljedećim pitanjima na odgovore odgovaraš upisivanjem slova koji se nalazi ispred

Državno natjecanje / Osnove informatike Srednje škole Zadaci U sljedećim pitanjima na odgovore odgovaraš upisivanjem slova koji se nalazi ispred Zadaci. 8. U sljedećim pitanjima na odgovore odgovaraš upisivanjem slova koji se nalazi ispred točnog odgovora, u za to predviđen prostor. Odgovor Ako želimo stvoriti i pohraniti sliku, ali tako da promjenom

Више

Republika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA ZAVRŠNI ISPIT NA KRAJU OSNOVN

Republika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA ZAVRŠNI ISPIT NA KRAJU OSNOVN Republika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školska 2016/2017. godina TEST

Више

12_Predavanja_OPE

12_Predavanja_OPE OSNOVE POSLOVNE EKONOMIJE 12. Kalkulacija Sadržaj izlaganja: 12. KALKULACIJA 12.1. Pojam kalkulacije 12.2. Elementi kalkulacije 12.3. Vrste kalkulacije 12.4. Metode kalkulacije 12.4.1. Kalkulacija cijene

Више

Naknada za rad upravniku stambene zajednice koji je izabran iz redova stanara Šta sve treba da zna stambena zajednica koja odluči da upravniku koji je

Naknada za rad upravniku stambene zajednice koji je izabran iz redova stanara Šta sve treba da zna stambena zajednica koja odluči da upravniku koji je Naknada za rad upravniku stambene zajednice koji je izabran iz redova stanara Šta sve treba da zna stambena zajednica koja odluči da upravniku koji je izabran iz redova stanara isplaćuje naknadu za rad

Више

IZVADAK IZ KATALOGA PROIZVODA SEKTORA GRAĐANSTVA Info telefon: Stranica 1 od 10 Izvadak iz Kataloga proizvoda Sektora građa

IZVADAK IZ KATALOGA PROIZVODA SEKTORA GRAĐANSTVA   Info telefon: Stranica 1 od 10 Izvadak iz Kataloga proizvoda Sektora građa Stranica 1 od 10 Izvadak iz Kataloga proizvoda Sektora građanstva za fizičke osobe u primjeni od 25.01.2014. štednja 1. Štednja po viđenju 1.1. Štednja po viđenju vodi se na štednim knjižicama ili štednim

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година

Више

Analiza poslovanja HNK HAJDUK

Analiza poslovanja HNK HAJDUK Split, 26.09.2013.god. Analiza poslovanja HNK Hajduk Split Pročelnica Službe za unutarnju reviziju: Alma Peroš SADRŽAJ: 1. Osnovne informacije 1.1. Vlasnička struktura 1.2. Djelatnost 2. Financijsko stanje

Више

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.

Више

Microsoft Word JEDINICE ZA MERENJE-formulice

Microsoft Word JEDINICE ZA MERENJE-formulice JEDINICE ZA MERENJE DUŽINA Osnovna jedinica za merenje dužine je metar. Manje i veće jedinice koje koristimo su: kilometar km km=m m= km=, km metar m decimetar dm m=dm dm= m=,m centimetar cm m=cm cm =

Више

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK

Више

PRIJEDLOG!!! Na temelju članka 35. Zakona o lokalnoj i područnoj (regionalnoj) samoupravi (»Narodne novine«broj 33/01, 60/01, 129/05, 109/07, 125/08,

PRIJEDLOG!!! Na temelju članka 35. Zakona o lokalnoj i područnoj (regionalnoj) samoupravi (»Narodne novine«broj 33/01, 60/01, 129/05, 109/07, 125/08, PRIJEDLOG!!! Na temelju članka 35. Zakona o lokalnoj i područnoj (regionalnoj) samoupravi (»Narodne novine«broj 33/01, 60/01, 129/05, 109/07, 125/08, 36/09, 150/11, 144/12, 19/13 proč. tekst i 137/15 ispr.),

Више

Linearna algebra Mirko Primc

Linearna algebra Mirko Primc Linearna algebra Mirko Primc Sadržaj Poglavlje 1. Polje realnih brojeva 5 1. Prirodni i cijeli brojevi 5 2. Polje racionalnih brojeva 6 3. Polje realnih brojeva R 9 4. Polje kompleksnih brojeva C 13 5.

Више

Републичко такмичење

Републичко такмичење 1 РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ОСНОВА ЕКОНОМИЈЕ БЕОГРАД, МАРТ 2015. Питања саставио: доцент др Ђорђе Митровић, Универзитет у Београду, Економски факултет 1. Монетаристи су Питања 1 поен а. сматрали да је незапосленост

Више

Slide 1

Slide 1 OSNOVNI POJMOVI Naredba je uputa računalu za obavljanje određene radnje. Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Pisanje programa zovemo programiranje. Programski jezik

Више

I OPĆE ODREDBE 1. Ovom se Odlukom utvrđuju kamatne stope na plasmane pravnim i fizičkim osobama, depozite pravnih i fizičkih osoba, te naknade za uslu

I OPĆE ODREDBE 1. Ovom se Odlukom utvrđuju kamatne stope na plasmane pravnim i fizičkim osobama, depozite pravnih i fizičkih osoba, te naknade za uslu I OPĆE ODREDBE 1. Ovom se Odlukom utvrđuju kamatne stope na plasmane pravnim i fizičkim osobama, depozite pravnih i fizičkih osoba, te naknade za usluge koje Banka obavlja i koje su navedene u ovoj Odluci,

Више

REPUBLIKA HRVATSKA MINISTARSTVO FINANCIJA POREZNA UPRAVA - SREDIŠNJI URED Zagreb, 04. travnja PREDMET: Što znači ulazak u EU OPĆENITO 1. Hoće li

REPUBLIKA HRVATSKA MINISTARSTVO FINANCIJA POREZNA UPRAVA - SREDIŠNJI URED Zagreb, 04. travnja PREDMET: Što znači ulazak u EU OPĆENITO 1. Hoće li REPUBLIKA HRVATSKA MINISTARSTVO FINANCIJA POREZNA UPRAVA - SREDIŠNJI URED Zagreb, 04. travnja 2013. PREDMET: Što znači ulazak u EU OPĆENITO 1. Hoće li se ulaskom u EU uvesti novi porezi? Jedna od zajedničkih

Више

Microsoft Word - 24ms241

Microsoft Word - 24ms241 Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година

Више

REPUBLIKA HRVATSKA KRAPINSKO - ZAGORSKA ŢUPANIJA GRAD ZLATAR GRADONAČELNIK KLASA:410-01/17-01/02 URBROJ: 2211/ Zlatar, GRADSKO V

REPUBLIKA HRVATSKA KRAPINSKO - ZAGORSKA ŢUPANIJA GRAD ZLATAR GRADONAČELNIK KLASA:410-01/17-01/02 URBROJ: 2211/ Zlatar, GRADSKO V REPUBLIKA HRVATSKA KRAPINSKO - ZAGORSKA ŢUPANIJA GRAD ZLATAR GRADONAČELNIK KLASA:410-01/17-01/02 URBROJ: 2211/01-02-17-2 Zlatar, 30.05.2017. GRADSKO VIJEĆE GRADA ZLATARA Predmet: Donošenje Odluke o porezima

Више

REPUBLIKA HRVATSKA MINISTARSTVO FINANCIJA POREZNA UPRAVA PODRUČNI URED Zagreb Obrazac DOH ISPOSTAVA Centar 1. OPĆI PODACI PRIJAVA POREZA NA DOHODAK ZA

REPUBLIKA HRVATSKA MINISTARSTVO FINANCIJA POREZNA UPRAVA PODRUČNI URED Zagreb Obrazac DOH ISPOSTAVA Centar 1. OPĆI PODACI PRIJAVA POREZA NA DOHODAK ZA REPUBLIKA HRVATSKA MINISTARSTVO FINANCIJA POREZNA UPRAVA PODRUČNI URED Zagreb Obrazac DOH ISPOSTAVA Centar. OPĆI PODACI PRIJAVA POREZA NA ZA 200. GODINU.. IME I PREZIME/IME RODITELJA: Ivo Ivić / Josip..

Више

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ

Више

knjiga.dvi

knjiga.dvi 1. Vjerojatnost 1. lgebra dogadaja......................... 1 2. Vjerojatnost............................. 9 3. Klasični vjerojatnosni prostor................. 14 4. eskonačni vjerojatnosni prostor...............

Више

STAMBENI KREDIT NEKRETNINE BANKE ERSTE&STEIERMÄRKISCHE BANK D.D., Jadranski trg 3a, Rijeka; OIB: HR ; Info telefon: ;

STAMBENI KREDIT NEKRETNINE BANKE ERSTE&STEIERMÄRKISCHE BANK D.D., Jadranski trg 3a, Rijeka; OIB: HR ; Info telefon: ; Stranica 1/6 Opće informacije o stambenom kreditu za kupnju nekretnina iz portfelja Banke UVJETI PROIZVODA Iznos kredita ovisno o valuti: Kamatna stopa: Bez hipoteke od 15.000,00 do 225.000,00 Uz hipoteku:

Више

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi 3. siječnja 0. od 3:00 do 4:00 RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovitelji Sadržaj Zadaci. 4.... Zadaci 5. 0.... 3 od 8 Zadaci. 4. U sljedećim pitanjima na pitanja odgovaraš upisivanjem

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske optike (lom i refleksija svjetlosti). Određivanje žarišne daljine tanke leće Besselovom metodom. Teorijski dio Zrcala i leće su objekti

Више

- UPUTSTVO ZA IZRADU I NAČIN DOSTAVE PROJEKCIJE POSLOVANJA DRUŠTVA ZA FAKTORING Sarajevo, mart / ožujak godine

- UPUTSTVO ZA IZRADU I NAČIN DOSTAVE PROJEKCIJE POSLOVANJA DRUŠTVA ZA FAKTORING Sarajevo, mart / ožujak godine - UPUTSTVO ZA IZRADU I NAČIN DOSTAVE PROJEKCIJE POSLOVANJA DRUŠTVA ZA FAKTORING Sarajevo, mart / ožujak 2019. godine Na temelju čl. 5. stav (1) tačka h) i 23. stav (1) tačka d) Zakona o Agenciji za bankarstvo

Више

My_P_Red_Bin_Zbir_Free

My_P_Red_Bin_Zbir_Free БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. D. Skup svih realnih brojeva koji su jednaki ili manji od je interval, ]. Skup svih realnih brojeva koji su strogo veći od je interval, +. Traženi skup tvore svi realni

Више

СЕКТОР ЗА НАДЗОР НАД ОБАВЉАЊЕМ ДЕЛАТНОСТИ ОСИГУРАЊА ОДЕЉЕЊЕ ЗА НАДЗОР НАД ДЕЛАТНОШЋУ ДОБРОВОЉНИХ ПЕНЗИЈСКИХ ФОНДОВА СЕКТОР ДОБРОВОЉНИХ ПЕНЗИЈСКИХ ФОНД

СЕКТОР ЗА НАДЗОР НАД ОБАВЉАЊЕМ ДЕЛАТНОСТИ ОСИГУРАЊА ОДЕЉЕЊЕ ЗА НАДЗОР НАД ДЕЛАТНОШЋУ ДОБРОВОЉНИХ ПЕНЗИЈСКИХ ФОНДОВА СЕКТОР ДОБРОВОЉНИХ ПЕНЗИЈСКИХ ФОНД СЕКТОР ЗА НАДЗОР НАД ОБАВЉАЊЕМ ДЕЛАТНОСТИ ОСИГУРАЊА ОДЕЉЕЊЕ ЗА НАДЗОР НАД ДЕЛАТНОШЋУ ДОБРОВОЉНИХ ПЕНЗИЈСКИХ ФОНДОВА СЕКТОР ДОБРОВОЉНИХ ПЕНЗИЈСКИХ ФОНДОВА У СРБИЈИ Извештај за прво тромесечје године Садржај:

Више