8. susreti Hrvatskog društva za mehaniku Osijek, 7. i 8. srpnja godine 1 Numeričko modeliranje procesa kvazi-krhkog loma primjenom faznog modeli

Величина: px
Почињати приказ од странице:

Download "8. susreti Hrvatskog društva za mehaniku Osijek, 7. i 8. srpnja godine 1 Numeričko modeliranje procesa kvazi-krhkog loma primjenom faznog modeli"

Транскрипт

1 8. susreti Hrvatskog društva za mehaniku Numeričko modeliranje procesa kvazi-krhkog loma primjenom faznog modeliranja Seleš, K., Lesičar, T., Tonković, Z. 3 i Sorić, J. 4 Sažetak Numeričko modeliranje nastanka i rasta pukotina u materijalu predstavlja važan interes u inženjerskoj praksi te već dulje vrijeme privlači pozornost mnogih istraživača. Za krhke materijale dostupno je više različitih metoda koje se temelje na Griffithovoj teoriji gdje se formiranje pukotine određuje pomoću energije površinske napetosti, odnosno energije potrebne za stvaranje dvaju novih površina prijeloma. Pritom se najviše primjenjuju diskretne metode u kojima je rast pukotine kao geometrijskog diskontinuiteta definiran kriterijem loma za razdvajanje čvorova u mreži konačnih elemenata. Najveći nedostatak ovih metoda je što se rast pukotine odvija samo duž rubova konačnih elemenata te su rezultati ovisni o gustoći i usmjerenosti mreže. Kako bi se prevladalo nefizikalno ponašanje standardnih formulacija za modeliranje oštećenja u materijalu, zadnjih godina aktualni su principi faznog modeliranja (eng. Phase-field modeling). Ovi principi omogućuju modeliranje mikrostrukture materijala koja se sastoji od više različitih faza na način da pretpostavljaju kontinuiranu transformaciju između tih faza. Za slučaj oštećenja materijala, različite faze odnose se na cjeloviti materijal, odnosno pukotinu. Umjesto diskretnog opisa, fazno modeliranje temelji se na kontinuumskom opisu pukotine u kojoj je diskontinuitet raspodijeljen preko određenog volumena. Na taj način, pomoću faznog modeliranja moguće je pratiti nastanak, rast i srastanje pukotina do konačnog loma. U radu je dan prikaz algoritma faznog modeliranja za numeričku simulaciju procesa nastanka i rasta pukotina u kvazi-krhkom materijalu. Algoritam faznog modeliranja ugrađen je u programski paket ABAQUS primjenom korisničkih rutina UEL i UMAT. Ključne riječi: kvazi-krhki lom, fazno modeliranje, metoda konačnih elemenata, mehanika oštećenja i loma Karlo Seleš, mag.ing.mech., Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, Zavod za tehničku mehaniku, Ivana Lučića 5, 0000 Zagreb, karlo.seles@fsb.hr Dr.sc. Tomislav Lesičar, tomislav.lesicar@fsb.hr 3 Prof.dr.sc. Zdenko Tonković, zdenko.tonkovic@fsb.hr 4 Prof.dr.sc. Jurica Sorić, jurica.soric@fsb.hr

2 8. susreti Hrvatskog društva za mehaniku Uvod Razvojem računalne tehnologije proširene su mogućnosti klasične mehanike loma. Umjesto klasično odvojenih konstitutivnih relacija i kriterija loma, lokalni gubitak cjelovitosti materijala moguće je uvrstiti u konstitutivne relacije. Lom se tada smatra konačnom posljedicom procesa degradacije materijala. Važan utjecaj na nastanak i rast oštećenja ima mikrostruktura materijala []. Kako mikrostrukturna razina nije uključena u klasične kontinuumske modele oštećenja [], [3], [4], numeričkim rješavanjem problema dolazi do lokalizacije rasta oštećenja što doprinosi fizikalno nerealnom rješenju uz prisustvo singularnosti brzine oštećenja i ovisnosti rješenja o gustoći i usmjerenosti mreže konačnih elemenata [5]. Kako bi se riješio navedeni problem, razvijene su različite regularizacijske tehnike temeljene na poboljšanju modela klasičnog kontinuuma njegovim obogaćivanjem parametrima unutarnje duljinske skale na više različitih načina. Jedna od tih tehnika temelji se na uvođenju nelokalnosti u model putem dodatnog člana višeg reda u funkciju gustoće energije deformiranja, a koji uključuje gradijente deformacije, odnosno deformacije drugog reda te njihove konjugirane vrijednosti, naprezanja drugog reda []. U zadnje vrijeme vrlo su atraktivni principi faznog modeliranja (eng. Phase-field modeling) kojima se pukotina regularizira na način da se umjesto diskretne definicije pukotine, odnosno diskontinuiteta, isti raspodjeli po određenom volumenu [6]. To se postiže uvođenjem dodatne skalarne varijable koja poprima vrijednost za slučaj pukotine, odnosno 0 za neoštećeni materijal. Ono što čini ovaj pristup posebno atraktivnim je njegova sposobnost učinkovitog simuliranja složenih procesa oštećenja i loma uključujući nastanak, rast, srastanje i grananje oštećenja, kako za dvodimenzijske tako i za trodimenzijske probleme. Rast pukotina automatski se prati razvojem glatkog polja na fiksnoj mreži konačnih elemenata. Prema tome, fazno modeliranje spada u kontinuumski opis diskontinuiteta što ima značajne prednosti nad diskretnim opisom pukotine čija numerička implementacija zahtijeva eksplicitno (u klasičnoj metodi konačnih elemenata, MKE) ili implicitno (u proširenoj MKE, XFEM) rješavanje problema diskontinuiteta. U literaturi [6] je vidljivo da se primjenom klasične (izotropne) formulacije faznog modeliranja dobiva nefizikalno ponašanje konstrukcijske komponente s pukotinom. Za eliminiranje tog problema, razvijene su anizotropne formulacije faznog modeliranja. Pritom se vrši aditivna dekompozicija energije deformiranja na dio uzrokovan vlačnim, odnosno tlačnim naprezanjima primjenom spektralne dekompozicije [7], odnosno sferno-devijatorske dekompozicije [8]. Na taj način se degradacijska funkcija primjenjuje samo na dio energije koji izaziva rast pukotine. U radu je dan prikaz algoritma faznog modeliranja za numeričku simulaciju kvazi-krhkog loma. Naglasak je stavljen upravo na nefizikalno ponašanje uslijed izotropne formulacije faznog modeliranja. Učinkovitost numeričkog algoritma prikazana je na primjeru rastezanja membrane sa zarezom. Izvod konstitutivnih jednadžbi Princip faznog modeliranja za opisivanje problema kvazi-krhkog oštećenja materijala temelji se na proširenju Helmholtzove slobodne energije dodatnim članom koji se odnosi na energiju pukotine

3 8. susreti Hrvatskog društva za mehaniku 3 d Gc d. () b s / U prethodnoj jednadžbi koja opisuje ukupnu potencijalnu energiju, energiju cjelovitog materijala, dok se elastičnog deformiranja, G c s b odnosi na pukotinu. Ovdje je se odnosi na slobodnu gustoća energije je Griffithova energija otvaranja pukotine, dok su razmatrani volumen, odnosno površina pukotine. Regularizacijom pukotine preko cijelog volumena, gubi se nepoznanica površine pukotine te se jednadžbu () svodi na g d Gc d. () Na taj način se podintegralna funkcija u drugom članu izraza () zamjenjuje s funkcijom gustoće površine pukotine, a u prvi član se dodaje degradacijska funkcija g, tzv.. Time se diskretni opis pukotine zamjenjuje kontinuumskim pristupom, čime se izbjegava eksplicitno praćenje površine pukotine. Funkcija je izvedena iz D primjera, gdje je diskretna, oštra pukotina zamijenjena eksponencijalnom funkcijom x x 0 za x, x x exp, x za x 0, kao što je prikazano na slici. Za D slučaj vrijedi zadovoljavajuća funkcija ' 0 za x, (3) s G dx da G A, pa je c c odnosno u općem slučaju,. xi xi (4) (5) Slika. Regularizacija pukotine za različite vrijednosti l

4 4 8. susreti Hrvatskog društva za mehaniku Ovdje je još potrebno izvesti degradacijsku funkciju koja množi energiju deformiranja na taj način smanjuje krutost materijala uslijed pojave oštećenja. Uobičajena forma degradacijske funkcije kod faznog modeliranja je prikazana jednadžbom prema [7] g k. (6) Konačno, nakon regularizacije, dobivamo proširenu funkciju slobodne energije koja glasi G c k. (7) d d Primjenom principa virtualnog rada ext, (8) ; int j j j j δw δw b δu d h δu d δ sada je moguće doći do konstitutivnih relacija faznog modeliranja u obliku k / x b 0 na, ij i j k n h na, i ij j h u u na, j j u G G / x x c na, c i i / xn0 na. i i Iz jednadžbe (9) vidljivo je kako upravlja razvojem oštećenja. Kako ove relacije ne zadovoljavaju uvjet ireverzibilnosti, uvodi se parametar povijesti oštećenja prema [7] koji zamjenjuje 0, t x, t max x,, (0) u jednadžbi (9) i sprječava smanjenje oštećenja tijekom deformiranja. i (9) 3 Dekompozicija energije deformiranja U mehanici loma je poznato da vlačna naprezanja otvaraju pukotine, dok ih tlačna zatvaraju. Kako bi se izbjegla interpenetracija površine pukotine i kriva putanja rasta pukotine uslijed utjecaja tlačnih naprezanja, u jednadžbi razvoja parametra faznog modeliranja potrebno je razdvojiti energiju deformiranja na dio koji se odnosi na vlačna, odnosno tlačna naprezanja. Dva najučestalija načina razdvajanja energije deformiranja u literaturi su spektralna dekompozicija 3 * tr( ) tr, : i i ni n i, () i sferno devijatorska dekompozicija dev dev tr( ) tr : ; tr( ) () 3 3

5 8. susreti Hrvatskog društva za mehaniku 5 Primjenom neke od navedenih dekompozicija, iz početne jednadžbe faznog modeliranja () se dobiva g d Gc d, (3) gdje je očito kako degradacijska funkcija djeluje samo na pozitivni dio, dok negativni dio ostaje ne degradiran. Također, daljnjim izvodom u jednadžbi razvoja oštećenja (9), se zamjenjuje s. Korištenjem takvih dekompozicija uvodi se anizotropnost zbog čega se javljaju nesimetrične matrice krutosti. Zbog navedenog, anizotropnost još nije uspješno implementirana u ovom radu. 4 Numerički primjer Fazno modeliranje kvazi-krhkog oštećenja prikazano je na jednostavnom akademskom primjeru razvlačenja membrane s pukotinom. Geometrija i rubni uvjeti prikazani su na slici. Zbog simetrije, modelirana je samo polovica ploče kako bi se smanjili računalni resursi. Mreža konačnih elemenata je jednolika i sastoji se od 0000 četverokutnih konačnih elemenata s 3 stupnja slobode u čvoru ( pomaka i parametar faznog modeliranja ) za ravninsko stanje deformacija. Mreža je jednolika upravo iz razloga da ne utječe na smjer rasta pukotine. Materijalna svojstva su preuzeta iz [7]: λ=,5 kn/mm, μ=80,77 kn/mm, G C=,7x0-3 kn/mm, l=4 mm. h = 00 mm a) b) Slika. a) Geometrija i b) rubni uvjeti Sila reakcije (N) a) b) c) a) b) c) d) Vertikalni pomak (mm) Slika 3. Polje varijable za 3 različita stanja opterećenja a), b), c) i d) dijagram sila-pomak Slike 3.a)-c) prikazuju polje varijable za 3 različita stanja opterećenja. Vidljivo je da se na ovom jednostavnom primjeru ne pojavljuje nefizikalni rast pukotine uslijed korištenja izotropnog

6 6 8. susreti Hrvatskog društva za mehaniku algoritma bez dekompozicije energije deformiranja. Za složenije primjere, bit će ipak potrebno uključiti anizotropnost. Slika 3.d) je dijagram ovisnosti sile i pomaka te jasno prikazuje kako nosivost materijala pada sa širenjem oštećenja te je pri konačnom lomu jednaka nuli. 5 Zaključak U radu je prikazan postupak faznog modeliranja za rješavanje problema kvazi-krhkog loma. Prikazan je termodinamički i varijacijski konzistentan izvod algoritma za rješavanje navedenog problema. Pozornost je posvećena dekompoziciji energije deformiranja za slučaj vlačnih i tlačnih naprezanja. Kako u ovoj fazi istraživanja navedena dekompozicija još nije uspješno implementirana u algoritam, mogućnosti faznog modeliranja prikazane su na jednostavnom primjeru razvlačenja membrane s pukotinom. Zahvala Istraživanje je u potpunosti financirano sredstvima Hrvatske zaklade za znanost u okviru projekta Multiscale Numerical Modeling of Material Deformation Responses from Macro- to Nanolevel (56) - MNumMacroNano. Literatura [] Putar F., Sorić J., Lesičar T. i Tonković Z. Damage modeling employing strain gradient continuum theory. International Journal of Solids and Structures. 07, doi: 0.06/j.ijsolstr [] Lesičar T., Tonković Z. i Sorić J. A Second-Order Two-Scale Homogenization Procedure Using C Macrolevel Discretization. Computational Mechanics. 04;54(): [3] Lesičar T., Sorić J. i Tonković Z. Large strain, two-scale computational approach using continuity finite element employing a second gradient theory. Computer Methods in Applied Mechanics and Engineering. 06;(): [4] Lesičar, T., Tonković, Z., Sorić, J. Two-Scale Computational Approach Using Strain Gradient Theory at Microlevel. International Journal of Mechanical Sciences, 07;6: [5] Pijaudier-Cabot G. i Bažant Z. Nonlocal damage theory. Journal of engineering mechanics. 987;3(0):5-33. [6] Ambati M., Gerasimov T. i De Lorenzis L. A review on phase-field models of brittle fracture. Computational Mechanics. 05;55: [7] Miehe C., Welschinger F. i Hofacker M. Thermodynamically consistent phase-field models of fracture:variational principles and multi-field FE implementations. Int. J. Numer. Meth. Engng. 00;83:73 3. [8] Amor H., Marigo J.-J. i Maurini C. Regularized formulation of thevariational brittlefracture with unilateral contact: Numerical experiments. J Mech Ph Solid. 009;57 (8):09 9.

CVRSTOCA

CVRSTOCA ČVRSTOĆA 12 TEORIJE ČVRSTOĆE NAPREGNUTO STANJE Pri analizi unutarnjih sila koje se pojavljuju u kosom presjeku štapa opterećenog na vlak ili tlak, pri jednoosnom napregnutom stanju, u tim presjecima istodobno

Више

osnovni gredni elementi - primjer 2.nb

osnovni gredni elementi - primjer 2.nb MKE: Zadatak 1 - Primjer 1 Za nosač na slici potrebno je odrediti raspodjelu momenata savijanja pomoću osnovnih grednih elemenata. Gredu diskretizirati sa elementa. Rezultate usporediti sa analitičkim

Више

Microsoft Word - clanakGatinVukcevicJasak.doc

Microsoft Word - clanakGatinVukcevicJasak.doc Šesti susret Hrvatskoga društva za mehaniku Rijeka, 29-30. svibnja 2014. PRIMJENA NAVAL HYDRO PAKETA ZA PRORAČUN VALNIH OPTEREĆENJA Gatin, I., Vukčević, V. & Jasak, H. Sažetak: Ovaj rad prikazuje mogućnosti

Више

NASLOV RADA (12 pt, bold, Times New Roman)

NASLOV RADA (12 pt, bold, Times New Roman) 9 th International Scientific Conference on Production Engineering DEVELOPMENT AND MODERNIZATION OF PRODUCTION PRIMJENA METODE KONAČNIH ELEMENATA U ANALIZI OPTEREĆENJA PLASTIČNE PREKLOPIVE AMBALAŽE Damir

Више

Slide 1

Slide 1 0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,

Више

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode]

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode] INŽENJERSKE SIMULACIJE Aleksandar Karač Kancelarija 1111 tel: 44 91 20, lok. 129 akarac@ptf.unze.ba Nermin Redžić Kancelarija 4202 tel: 44 91 20, lok.128 nermin.redzic@ptf.unze.ba www.ptf.unze.ba http://ptf.unze.ba/inzenjerske-simulacije

Више

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robotika Zagreb, 2014. MODEL PROCESA U PROSTORU STANJA

Више

Development Case

Development Case Tehnička dokumentacija Verzija Studentski tim: Nastavnik: < izv. prof. dr. sc. Nikola Mišković> FER 2 -

Више

Матрична анализа конструкција

Матрична анализа конструкција . 5 ПРИМЕР На слици. је приказан носач који је састављен од три штапа. Хоризонтални штапови су константног попречног пресека b/h=./.5 m, док је коси штап са линеарном променом висине. Одредити силе на

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

Microsoft Word - CAD sistemi

Microsoft Word - CAD sistemi U opštem slučaju, se mogu podeliti na 2D i 3D. 2D Prvo pojavljivanje 2D CAD sistema se dogodilo pre više od 30 godina. Do tada su inženjeri koristili table za crtanje (kulman), a zajednički jezik komuniciranja

Више

Postojanost boja

Postojanost boja Korištenje distribucije osvjetljenja za ostvaranje brzih i točnih metode za postojanost boja Nikola Banić 26. rujna 2014. Sadržaj Postojanost boja Ubrzavanje lokalnog podešavanja boja Distribucija najčešćih

Више

Prva skupina

Prva skupina Prva skupina 1. Ravnoteža napetosti, vrste deformacija, te Lameove jednadžbe i njihovo značenje. 2. Prijenosna funkcija i frekventni odziv generaliziranog mjernog sustava. 3. Građa unutrašnjosti Zemlje.

Више

SVEUČILIŠTE U ZAGREBU

SVEUČILIŠTE U ZAGREBU SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Zagreb, 2017. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Mentor: Doc. dr. sc. Tomislav Jarak Student: Zagreb,

Више

Metoda konačnih elemenata; teorija i praktična implementacija math.e 1 of 15 Vol.25. math.e Hrvatski matematički elektronički časopis Metoda konačnih

Metoda konačnih elemenata; teorija i praktična implementacija math.e 1 of 15 Vol.25. math.e Hrvatski matematički elektronički časopis Metoda konačnih 1 of 15 math.e Hrvatski matematički elektronički časopis Metoda konačnih elemenata; teorija i praktična implementacija klavirska žica konačni elementi mehanika numerička matematika Andrej Novak Sveučilište

Више

DUBINSKA ANALIZA PODATAKA

DUBINSKA ANALIZA PODATAKA DUBINSKA ANALIZA PODATAKA () ASOCIJACIJSKA PRAVILA (ENGL. ASSOCIATION RULE) Studeni 2018. Mario Somek SADRŽAJ Asocijacijska pravila? Oblici učenja pravila Podaci za analizu Algoritam Primjer Izvođenje

Више

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija

Више

Slide 1

Slide 1 Анализа електроенергетских система -Прорачун кратких спојева- Кратак спој представља поремећено стање мреже, односно поремећено стање система. За време трајања кратког споја напони и струје се мењају са

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru

Више

XIII. Hrvatski simpozij o nastavi fizike Istraživački usmjerena nastava fizike na Bungee jumping primjeru temeljena na analizi video snimke Berti Erja

XIII. Hrvatski simpozij o nastavi fizike Istraživački usmjerena nastava fizike na Bungee jumping primjeru temeljena na analizi video snimke Berti Erja Istraživački usmjerena nastava fizike na Bungee jumping primjeru temeljena na analizi video snimke Berti Erjavec Institut za fiziku, Zagreb Sažetak. Istraživački usmjerena nastava fizike ima veću učinkovitost

Више

Newtonova metoda za rješavanje nelinearne jednadžbe f(x)=0

Newtonova metoda za rješavanje nelinearne jednadžbe f(x)=0 za rješavanje nelinearne jednadžbe f (x) = 0 Ime Prezime 1, Ime Prezime 2 Odjel za matematiku Sveučilište u Osijeku Seminarski rad iz Matematičkog praktikuma Ime Prezime 1, Ime Prezime 2 za rješavanje

Више

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba

Више

9. : , ( )

9.  :  ,    ( ) 9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе

Више

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRALI Sastavio: Ante Bilušić Split, rujan 4. 1 Neodredeni

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske optike (lom i refleksija svjetlosti). Određivanje žarišne daljine tanke leće Besselovom metodom. Teorijski dio Zrcala i leće su objekti

Више

Microsoft Word - ZBORNIK-2003-v4.doc

Microsoft Word - ZBORNIK-2003-v4.doc Peti susret Hrvatskog društva za mehaniku Terme Jezer ica, Donja Stubica, 6.-7. lipnja 013. MODELIRANJE ZAOSTALIH NAPREZANJA U ZAVARENIM OREBRENIM PANELIMA Barjaši, D., Boži, Ž. Sažetak: Koriste i programski

Више

Microsoft Word - GeoNotes

Microsoft Word - GeoNotes УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА РАЗВОЈ И ПРИМЕНА МАТЕРИЈАЛНИХ МОДЕЛА ПОРОЗНИХ МЕДИЈА У СТАТИЧКОЈ И ДИНАМИЧКОЈ АНАЛИЗИ НАСУТИХ БРАНА Крагујевац, 04. година I. Аутор Име и презиме: Датум

Више

Београд, МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА ЗАДАТАК 1 За носач приказан на слици: а) одредити дужине извијања свих штапова носача, ако на носач

Београд, МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА ЗАДАТАК 1 За носач приказан на слици: а) одредити дужине извијања свих штапова носача, ако на носач Београд, 30.01.2016. а) одредити дужине извијања свих штапова носача, ако на носач делују само концентрисане силе, б) ако је P = 0.8P cr, и на носач делује расподељено оптерећење f, одредити моменат савијања

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode]

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode] Dva pristupa u analiziranu kretana materiala: 1. Statistički pristup material se tretira kao skup molekula makroskopski fenomeni se obašnavau kao posledica molekularne aktivnosti računane primenom zakona

Више

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www. ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело

Више

Sedmi susret Hrvatskoga društva za mehaniku Split, lipnja PRIMJENA METODE HARMONIJSKE RAVNOTEŽE ZA SIMULACIJE TURBOSTROJEVA Cvijetić, G.

Sedmi susret Hrvatskoga društva za mehaniku Split, lipnja PRIMJENA METODE HARMONIJSKE RAVNOTEŽE ZA SIMULACIJE TURBOSTROJEVA Cvijetić, G. Sedmi susret Hrvatskoga društva za mehaniku Split, 16.-17. lipnja 2016. PRIMJENA METODE HARMONIJSKE RAVNOTEŽE ZA SIMULACIJE TURBOSTROJEVA Cvijetić, G., Jasak, H. Sažetak: U ovom radu predstavljena je metoda

Више

Microsoft PowerPoint - OMT2-razdvajanje-2018

Microsoft PowerPoint - OMT2-razdvajanje-2018 OSNOVE MAŠINSKIH TEHNOLOGIJA 2 TEHNOLOGIJA PLASTIČNOG DEFORMISANJA RAZDVAJANJE (RAZDVOJNO DEFORMISANJE) Razdvajanje (razdvojno deformisanje) je tehnologija kod koje se pomoću mašine i alata u zoni deformisanja

Више

Microsoft Word - vodicitm.doc

Microsoft Word - vodicitm.doc Универзитет у Београду Машински факултет ВОДИЧ кроз основне академске студије Информационе технологије у машинству Школска 2019/2020. година Београд, октобар 2019. године Структура студија које се од 1.10.2005.

Више

AM_Ple_NonLegReport

AM_Ple_NonLegReport 9.2.2017 A8-0005/9 Amandman 9 Stavak 1.a (novi) 1 a. poziva Komisiju da predloži sljedeće zajedničke europske definicije: umjetna inteligencija je automatizirani sustav s mogućnošću simulacije nekih ljudskih

Више

NAZIV PREDMETA TEHNIČKA MEHANIKA I Kod SKS003 Godina studija 1. Nositelj/i predmeta Dr.sc. Ado Matoković, prof.v.š. Bodovna vrijednost (ECTS) 7 Suradn

NAZIV PREDMETA TEHNIČKA MEHANIKA I Kod SKS003 Godina studija 1. Nositelj/i predmeta Dr.sc. Ado Matoković, prof.v.š. Bodovna vrijednost (ECTS) 7 Suradn NAZIV PREDMETA TEHNIČKA MEHANIKA I Kod SKS003 Godina studija. Nositelj/i predmeta Dr.sc. Ado Matoković, prof.v.š. Bodovna vrijednost (ECTS) 7 Suradnici Vladimir Vetma, predavač Način izvođenja nastave

Више

Slide 1

Slide 1 OSNOVNI POJMOVI Naredba je uputa računalu za obavljanje određene radnje. Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Pisanje programa zovemo programiranje. Programski jezik

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

Gravitacija kao specijalna relativistička teorija polja Jelena Filipović Fizički odsjek, PMF, Sveučilište u Zagrebu

Gravitacija kao specijalna relativistička teorija polja Jelena Filipović Fizički odsjek, PMF, Sveučilište u Zagrebu Gravitacija kao specijalna relativistička teorija polja Jelena Filipović Fizički odsjek, PMF, Sveučilište u Zagrebu Uvod Svojstva gravitacije dugodosežna interakcija graviton je bezmasena čestica statička

Више

Microsoft PowerPoint - Odskok lopte

Microsoft PowerPoint - Odskok lopte UTJEČE LI TLAK ZRAKA NA ODSKOK LOPTE? Učenici: Antonio Matas (8.raz.) Tomislav Munitić (8.raz.) Mentor: Jadranka Vujčić OŠ Dobri Kliška 25 21000 Split 1. Uvod Uspjesi naših olimpijaca i održavanje svjetskog

Више

I Jednadžbe magnetostatike Odzivne funkcije Rješavanje jednadžbi II Energija polja TDM relacije #5 Makroskopska magnetostatika I Makroskopske jednadžb

I Jednadžbe magnetostatike Odzivne funkcije Rješavanje jednadžbi II Energija polja TDM relacije #5 Makroskopska magnetostatika I Makroskopske jednadžb #5 Makroskopska magnetostatika I Makroskopske jednadžbe magnetostatike II Termodinamički potencijali predavanja 20** Jednadžbe magnetostatike Magnetske odzivne funkcije Rješavanje jednadžbi magnetostatike

Више

6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA

6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH  VODOVA SIGURNOST U PRIMJENI ELEKTRIČNE ENERGIJE 6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA Izv.prof. dr.sc. Vitomir Komen, dipl.ing.el. 1/14 SADRŽAJ: 6.1 Sigurnosni razmaci i sigurnosne

Више

Učinkovitost dizalica topline zrak – voda i njihova primjena

Učinkovitost dizalica topline  zrak – voda i njihova primjena Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu Stručni skup studenata Mi imamo rješenja vizije novih generacija za održivi, zeleni razvoj Učinkovitost dizalica topline zrak voda i njihova primjena

Више

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o Univerzitet u Beogradu Elektrotehnički akultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o namotaju statora sinhronog motora sa stalnim magnetima

Више

Sveučilište u Rijeci

Sveučilište u Rijeci Sveučilište u Rijeci Građevinski fakultet Naziv studija: PREDDIPLOMSKI STRUČNI STUDIJ Semestar 3. ak. god.: 2018./19. IZVEDBENI NASTAVNI PLAN ZA PREDMET: Osnove betonskih i zidanih konstrukcija Broj ECTS:

Више

Ravno kretanje krutog tela

Ravno kretanje krutog tela Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela

Више

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 4_19 [Compatibility Mode]

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 4_19 [Compatibility Mode] Univerzitet u Beogradu Građevinski fakutet Katedra za tehničku mehaniku i teoriju konstrukcija STABILNOST KONSTRUKCIJA IV ČAS V. PROF. DR MARIJA NEFOVSKA DANILOVIĆ 3. SABILNOST KONSTRUKCIJA 1 Geometrijska

Више

NAZIV PREDMETA TEHNIČKA MEHANIKA II Kod SKS010 Godina studija 1. Nositelj/i predmeta Dr.sc. Bože Plazibat, prof. v.š. u trajnom zvanju Bodovna vrijedn

NAZIV PREDMETA TEHNIČKA MEHANIKA II Kod SKS010 Godina studija 1. Nositelj/i predmeta Dr.sc. Bože Plazibat, prof. v.š. u trajnom zvanju Bodovna vrijedn NAZIV PREDMETA TEHNIČKA MEHANIKA II Kod SKS1 Godina studija 1. Nositelj/i predmeta Dr.sc. Bože Plazibat, prof. v.š. u trajnom zvanju Bodovna vrijednost (ECTS) 7 Suradnici Dr. sc. Ado Matoković, prof. v.

Више

Microsoft Word - Satnica_diplomski_str LJETO-V03.doc

Microsoft Word - Satnica_diplomski_str LJETO-V03.doc Semestar II Modul Konstruiranje i mehatronika 8-9 METODIČKO KONSTRUIRANJE KONSTRUKCIJSKI ELEMENTI ROBOTA 13-14 KONSTRUKCIJSKI ELEMENTI ROBOTA MET. KONSTRUIRANJE KOMPONENTE MEHATRONIČKIH SUSTAVA L6 KOMPONENTE

Више

Tolerancije slobodnih mjera ISO Tolerancije dimenzija prešanih gumenih elemenata (iz kalupa) Tablica 1.1. Dopuštena odstupanja u odnosu na dime

Tolerancije slobodnih mjera ISO Tolerancije dimenzija prešanih gumenih elemenata (iz kalupa) Tablica 1.1. Dopuštena odstupanja u odnosu na dime Tolerancije dimenzija prešanih gumenih elemenata (iz kalupa) Tablica 1.1. Dopuštena odstupanja u odnosu na dimenzije Dimenzije (mm) Klasa M1 Klasa M2 Klasa M3 Klasa M4 od NAPOMENA: do (uključujući) F C

Више

Slide 1

Slide 1 BETONSKE KONSTRUKCIJE 2 vježbe, 12.-13.12.2017. 12.-13.12.2017. DATUM SATI TEMATSKA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponavljanje poznatih postupaka

Више

P1.3 Projektovanje makroasemblera

P1.3 Projektovanje makroasemblera ПРОЈЕКТОВАЊЕ МАКРОАСЕМБЛЕРА Макроасемблер Потребна проширења асемблера 1 МАКРОАСЕМБЛЕР Макроасемблер преводи полазни програм написан на макроасемблерском језику у извршиви машински програм. Приликом израде

Више

C:/nmk/web/nmkskript.dvi

C:/nmk/web/nmkskript.dvi 1. Matematički model konstrukcije 1 1. Matematički model konstrukcije 1.1. Uvod Razvojem društva postupno je nastajala potreba i za većim praktičnim znanjima. Razvojem i percepcijom novih praktičnih znanja,

Више

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifični naboja elektrona (omjer e/me) iz poznatog polumjera putanje elektronske zrake u elektronskoj cijevi, i poznatog napona i jakosti

Више

NACRT HRVATSKE NORME nhrn EN :2008/NA ICS: ; Prvo izdanje, veljača Eurokod 3: Projektiranje čeličnih konstrukcija Dio

NACRT HRVATSKE NORME nhrn EN :2008/NA ICS: ; Prvo izdanje, veljača Eurokod 3: Projektiranje čeličnih konstrukcija Dio NACRT HRVATSKE NORME nhrn EN 1993-4-1:2008/NA ICS: 91.010.30; 91.080.30 Prvo izdanje, veljača 2013. Eurokod 3: Projektiranje čeličnih konstrukcija Dio 4-1: Silosi Nacionalni dodatak Eurocode 3: Design

Више

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.

Више

STATIKA GRAĐEVNIH KONSTRUKCIJA 273 smatra zamišljeni pomak konstrukcije kojim se ona od polaznoga dovodi u neki identični položaj, što se naziva prekl

STATIKA GRAĐEVNIH KONSTRUKCIJA 273 smatra zamišljeni pomak konstrukcije kojim se ona od polaznoga dovodi u neki identični položaj, što se naziva prekl STATIKA GRAĐEVNIH KONSTRUKCIJA 273 smatra zamišljeni pomak konstrukcije kojim se ona od polaznoga dovodi u neki identični položaj, što se naziva preklapanjem. Preklapanje se ne odnosi samo na geom etrijske,

Више

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca

Више

PowerPoint Presentation

PowerPoint Presentation + Fakultet organizacionih nauka Upravljanje razvojem IS MSc Ana Pajić Simović ana.pajic@fon.bg.ac.rs ANALIZA POSLOVNIH PROCESA BUSINESS PROCESS MANAGEMENT (BPM) PROCESS MINING + Business Process Management

Више

Microsoft PowerPoint - Basic_SIREN_Basic_H.pptx

Microsoft PowerPoint - Basic_SIREN_Basic_H.pptx Smart Integration of RENewables Regulacija frekvencije korištenjem mikromreža sa spremnicima energije i odzivom potrošnje Hrvoje Bašić Završna diseminacija projekta SIREN FER, 30. studenog 2018. Sadržaj

Више

P11.3 Analiza zivotnog veka, Graf smetnji

P11.3 Analiza zivotnog veka, Graf smetnji Поједностављени поглед на задњи део компајлера Међурепрезентација (Међујезик IR) Избор инструкција Додела ресурса Распоређивање инструкција Инструкције циљне архитектуре 1 Поједностављени поглед на задњи

Више

Matrice. Algebarske operacije s matricama. - Predavanje I

Matrice. Algebarske operacije s matricama. - Predavanje I Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,

Више

ФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА

ФАКУЛТЕТ  ОРГАНИЗАЦИОНИХ  НАУКА Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:

Више

Metode za automatsko podešavanje boje i svjetline slike

Metode za automatsko podešavanje boje i svjetline slike Metode za automatsko podešavanje boje i svjetline slike Mentor: prof. dr. sc. Sven Lončarić Student: Nikola Banić Zagreb, 9. srpnja 2013. Sadržaj Uvod Boje Postojanost boja Algoritmi za podešavanje boja

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

Stručno usavršavanje

Stručno usavršavanje TOPLINSKI MOSTOVI IZRAČUN PO HRN EN ISO 14683 U organizaciji: TEHNIČKI PROPIS O RACIONALNOJ UPORABI ENERGIJE I TOPLINSKOJ ZAŠTITI U ZGRADAMA (NN 128/15, 70/18, 73/18, 86/18) dalje skraćeno TP Čl. 4. 39.

Више

Microsoft Word - 09_Frenetove formule

Microsoft Word - 09_Frenetove formule 6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog

Више

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p Numerička matematika 11. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. predavanje dodatak p. 1/46 Sadržaj predavanja dodatka

Више

(Microsoft Word - Rje\232enja zadataka)

(Microsoft Word - Rje\232enja zadataka) 1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:

Више

Наставно-научно веће МАТЕМАТИЧКИ ФАКУЛТЕТ Универзитет у Београду На седници Наставно-научног већа Математичког факултета која је одржана дана 29. март

Наставно-научно веће МАТЕМАТИЧКИ ФАКУЛТЕТ Универзитет у Београду На седници Наставно-научног већа Математичког факултета која је одржана дана 29. март Наставно-научно веће МАТЕМАТИЧКИ ФАКУЛТЕТ Универзитет у Београду На седници Наставно-научног већа Математичког факултета која је одржана дана 29. марта 2013. г. одређени смо у Комисију за преглед и оцену

Више

Microsoft PowerPoint - 3_Elektrohemijska_korozija_kinetika.ppt - Compatibility Mode

Microsoft PowerPoint - 3_Elektrohemijska_korozija_kinetika.ppt  -  Compatibility Mode KOROZIJA I ZAŠTITA METALA dr Aleksandar Lj. Bojić Elektrohemijska korozija Kinetika korozionog procesa 1 Korozioni sistem izvan stanja ravnoteže polarizacija Korozija metala: istovremeno odvijanje dve

Више

NIAS Projekt e-građani KORISNIČKA UPUTA za aplikaciju NIAS Verzija 1.1 Zagreb, srpanj 2014.

NIAS Projekt e-građani KORISNIČKA UPUTA za aplikaciju NIAS Verzija 1.1 Zagreb, srpanj 2014. Projekt e-građani KORISNIČKA UPUTA za aplikaciju Verzija 1.1 Zagreb, srpanj 2014. Naslov: Opis: Korisnička uputa za aplikaciju Dokument sadrži upute korisnicima aplikacije u sustavu e-građani Ključne riječi:

Више

SVEUČILIŠTE U ZAGREBU

SVEUČILIŠTE U ZAGREBU SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Zagreb, 8. srpnja 2015. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Proračun horizontalnog savijanja

Више

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16 7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.

Више

M e h a n i k a 1 v e ž b e 4 / 2 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Pozn

M e h a n i k a 1 v e ž b e 4 / 2 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Pozn M e h a n i k a 1 v e ž b e 4 / 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Poznata su opterećenja F 1 = kn, F = 1kN, M 1 = knm, q =

Више

Microsoft Word - TPLJ-januar 2017.doc

Microsoft Word - TPLJ-januar 2017.doc Београд, 21. јануар 2017. 1. За дату кружну плочу која је еластично укљештена у кружни прстен и оптерећења према слици одредити максимални напон у кружном прстену. М = 150 knm/m p = 30 kn/m 2 2. За зидни

Више

(Kvantitativne metode odlu\350ivanja \226 problem optimalne zamjene opreme | math.e)

(Kvantitativne metode odlu\350ivanja \226 problem optimalne zamjene opreme | math.e) 1 math.e Hrvatski matematički elektronički časopis Kvantitativne metode odlučivanja problem optimalne zamjene opreme optimizacija teorija grafova mr. sc. Bojan Kovačić, dipl. ing. matematike, RRiF Visoka

Више

Račun smetnje i Greenove funkcije «Napredna kvantna fizika» Ivo Batistić Fizički odsjek, PMF Sveučilište u Zagrebu predavanja 2010 Pregled predavanja

Račun smetnje i Greenove funkcije «Napredna kvantna fizika» Ivo Batistić Fizički odsjek, PMF Sveučilište u Zagrebu predavanja 2010 Pregled predavanja Račun smetnje i Greenove funkcije «Napredna kvantna fizika» Ivo Batistić Fizički odsjek, PMF Sveučilište u Zagrebu predavanja 2010 Pregled predavanja Račun smetnje Greenove funkcije Wickov teorem Različite

Више

MB &ton Regionalni stručni časopis o tehnologiji betona Godina: MB&ton 1

MB &ton Regionalni stručni časopis o tehnologiji betona Godina: MB&ton 1 MB &ton Regionalni stručni časopis o tehnologiji betona Godina: 2019 2019 MB&ton 1 MB &ton Norma HRN EN 1992 [1] uvodi nove razrede čvrstoća betona, osim uobičajenih betona razreda C12/15 do razreda C50/60

Више

Informacijski sustav organizacije

Informacijski sustav organizacije Sveučilište u Rijeci ODJEL ZA INFORMATIKU R. Matejčić 2, Rijeka Akademska 2018./2019. godina INFORMACIJSKI SUSTAV ORGANIZACIJE Studij: Diplomski studij informatike (PI, IKS izborni kolegij) Godina i semestar:

Више

УНИВЕРЗИТЕТ У БЕОГРАДУ ГРАЂЕВИНСКИ ФАКУЛТЕТ Булевар краља Александра Београд, Р. Србија П. фах Телефон: (011) , Теле

УНИВЕРЗИТЕТ У БЕОГРАДУ ГРАЂЕВИНСКИ ФАКУЛТЕТ Булевар краља Александра Београд, Р. Србија П. фах Телефон: (011) , Теле УНИВЕРЗИТЕТ У БЕОГРАДУ ГРАЂЕВИНСКИ ФАКУЛТЕТ Булевар краља Александра 73 11120 Београд, Р. Србија П. фах 35-42 Телефон: (011) 321-86-06, 337-01-02 Телефакс: (011) 337-02-23 Е пошта: dekanat@grf.bg.ac.rs

Више

Objektno orijentirano modeliranje

Objektno orijentirano modeliranje Sveučilište u Rijeci ODJEL ZA INFORMATIKU Akademska 2018./2019. godina OBJEKTNO ORIJENTIRANO MODELIRANJE Studij: Preddiplomski studij informatike (JP) Preddiplomski dvopredmetni studij informatike (DP)

Више

Sveučilište u Zagrebu Građevinski fakultet Tajništvo FAKULTETSKO VIJEĆE KLASA: /19-06/02 URBROJ: Zagreb, 27. ožujka Na tem

Sveučilište u Zagrebu Građevinski fakultet Tajništvo FAKULTETSKO VIJEĆE KLASA: /19-06/02 URBROJ: Zagreb, 27. ožujka Na tem Sveučilište u Zagrebu Građevinski fakultet Tajništvo FAKULTETSKO VIJEĆE KLASA: 003-08/19-06/02 URBROJ: 251-64-03-19-14 Zagreb, 27. ožujka 2019. Na temelju članka 79. Zakona o znanstvenoj djelatnosti i

Више

Microsoft Word - GI_novo - materijali za ispit

Microsoft Word - GI_novo - materijali za ispit GEOTEHNIČKO INŽENJERSTVO DIJAGRAMI, TABLICE I FORMULE ZA ISPIT ak.god. 2011/2012 2 1 υi s yi = pb I syi Ei Slika 1. Proračun slijeganja vrha temelja po metodi prema Mayne & Poulos. Slika 2. Proračun nosivosti

Више

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ Универзитет у Београду, Електротехнички факултет, Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (3Е3ЕНТ) Јул 9. Трофазни уљни енергетски трансформатор са номиналним подацима: 4 V,

Више

Microsoft PowerPoint - GR_MbIS_12_IDEF

Microsoft PowerPoint - GR_MbIS_12_IDEF Menadžment poslovnih informacionih sistema - 12 metode modeliranja funkcija pripremila Doc. dr Gordana Radić Integfated DEFinition Definicija: je metoda (jezik) modeliranja bazirana je na kombinaciji grafike

Више

Uvod u računarstvo 2+2

Uvod u računarstvo 2+2 Programiranje 2 doc.dr.sc. Goranka Nogo PMF Matematički odsjek, Zagreb Kontakt ured: 228, drugi kat e-mail: nogo@math.hr konzultacije: četvrtak, 12:00-14:00 petak, 11:00-12:00 neki drugi termin, uz prethodni

Више

Inženjering informacionih sistema

Inženjering informacionih sistema Fakultet tehničkih nauka, Novi Sad Inženjering informacionih sistema Dr Ivan Luković Dr Slavica Kordić Nikola Obrenović Milanka Bjelica Dr Jelena Borocki Dr Milan Delić UML UML (Unified Modeling Language)

Више

MAZALICA DUŠKA.pdf

MAZALICA DUŠKA.pdf SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ELEKTROTEHNIČKI FAKULTET Sveučilišni studij OPTIMIRANJE INTEGRACIJE MALIH ELEKTRANA U DISTRIBUCIJSKU MREŽU Diplomski rad Duška Mazalica Osijek, 2014. SADRŽAJ

Више

Рапоред полагања испита школске године 2018/19. Ниво студија Основне академске студије Акредитација 2014 Машинско инжењерство Сатница испита Студијски

Рапоред полагања испита школске године 2018/19. Ниво студија Основне академске студије Акредитација 2014 Машинско инжењерство Сатница испита Студијски Рапоред полагања испита школске године 2018/19. Ниво студија Основне академске студије Акредитација 2014 Машинско инжењерство Сатница испита Студијски програм 9:00 КОД Н А З И В П Р Е Д М Е Т А ЈАН МАР

Више

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje ZAVRŠNI RAD Voditelj rada: Doc. dr. sc. Darko Landek Ivana Andrić Zagreb, veljača 2011.

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje ZAVRŠNI RAD Voditelj rada: Doc. dr. sc. Darko Landek Ivana Andrić Zagreb, veljača 2011. Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje ZAVRŠNI RAD Voditelj rada: Doc. dr. sc. Darko Landek Ivana Andrić Zagreb, veljača 2011. SAŽETAK Toplinska naprezanja nastaju u svim postupcima

Више

Optimizacija

Optimizacija Optimizacija 1 / 43 2 / 43 Uvod u optimizaciju Zadana funkcija Uvod u optimizaciju f : R n R Cilj: Naći x, točku minimuma funkcije f : - Problem je jednostavno opisati x = arg min x R n f (x). - Rješavanje

Више

Diferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod

Diferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod 1 math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod znakom integrala analiza Irfan Glogić, Harun Šiljak When guys at MIT or Princeton had trouble doing a certain integral,

Више

Pravilnik o priključenju spremnika energije na elektroenergetski sustav Zlatko Ofak (HOPS), Alan Župan (HOPS), Tomislav Plavšić (HOPS), Zora Luburić (

Pravilnik o priključenju spremnika energije na elektroenergetski sustav Zlatko Ofak (HOPS), Alan Župan (HOPS), Tomislav Plavšić (HOPS), Zora Luburić ( Pravilnik o priključenju spremnika energije na elektroenergetski sustav Zlatko Ofak (HOPS), Alan Župan (HOPS), Tomislav Plavšić (HOPS), Zora Luburić (FER), Hrvoje Pandžić (FER) Rezultat D4.4 istraživačkog

Више

Univerzitet u Beogradu Mašinski fakultet Konstrukcija i tehnologija proizvodnje letelica PODEŠAVANJE PROGRAMSKOG PAKETA CATIA V5 Miloš D. Petrašinović

Univerzitet u Beogradu Mašinski fakultet Konstrukcija i tehnologija proizvodnje letelica PODEŠAVANJE PROGRAMSKOG PAKETA CATIA V5 Miloš D. Petrašinović Univerzitet u Beogradu Mašinski fakultet Konstrukcija i tehnologija proizvodnje letelica PODEŠAVANJE PROGRAMSKOG PAKETA CATIA V5 Miloš D. Petrašinović Beograd, 2019 Sadržaj Sadržaj i 1 Uvod u programski

Више

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi 3. siječnja 0. od 3:00 do 4:00 RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovitelji Sadržaj Zadaci. 4.... Zadaci 5. 0.... 3 od 8 Zadaci. 4. U sljedećim pitanjima na pitanja odgovaraš upisivanjem

Више

SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA Seminarski rad u okviru predmeta Računalna forenzika BETTER PORTABLE GRAPHICS FORMAT Matej

SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA Seminarski rad u okviru predmeta Računalna forenzika BETTER PORTABLE GRAPHICS FORMAT Matej SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA Seminarski rad u okviru predmeta Računalna forenzika BETTER PORTABLE GRAPHICS FORMAT Matej Crnac Zagreb, siječanj 2018 Sadržaj Uvod 2 BPG format

Више

Konstrukcija linearnih višekoračnih metodi Postoje tri važne familije višekoračnih metoda: Adamsovi metodi Adams-Bashfortovi metodi kod kojih je ρ(w)

Konstrukcija linearnih višekoračnih metodi Postoje tri važne familije višekoračnih metoda: Adamsovi metodi Adams-Bashfortovi metodi kod kojih je ρ(w) Konstrukcija linearnih višekoračnih metodi Postoje tri važne familije višekoračnih metoda: Adamsovi metodi Adams-Bashfortovi metodi kod kojih je ρ(w) = w k w k 1 Adams-Moultonovi metodi kod kojih je ρ(w)

Више