Sveučilište u Zagrebu

Величина: px
Почињати приказ од странице:

Download "Sveučilište u Zagrebu"

Транскрипт

1 SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br PRONALAŽENJE STRATEGIJE U IGRAMA S VIŠE IGRAČA UZ POMOĆ EVOLUCIJSKIH ALGORITAMA Ivona Škorjanc Zagreb, lipanj 2017.

2

3 Sadržaj 1. Uvod Ponovljene igre za više igrača Iterirana zatvorenikova dilema Ostali primjeri Evolucijski algoritmi i ECF Traženje optimalne strategije igranja ponovljenih igara evolucijskim algoritmima Postojeća rješenja Idejno rješenje Programska implementacija Rezultati Učenje i ispitivanje na jednoj strategiji Broj generacija Veličina populacije Provjera utjecaja ulaznih parametara Učenje na grupi strategija Zaključak Literatura... 29

4 1. Uvod Sve popularnije područje umjetne inteligencije može dati rješenja za iznimno širok spektar problema. Ovaj rad fokusirat će se na problem pronalaženja strategije za ponovljene igre u više igrača. Ponovljenim igrama mogu se simulirati razne situacije odlučivanja i ponašajne značajke čovjeka. Problem pronalaženja strategije je zanimljiv jer nije sasvim intuitivno niti jednostavno smisliti dobru strategiju za neku od takvih igara. Kao alat za pronalaženje strategija koristit ćemo jednu od grana strojnog učenja evolucijske algoritme. Postoji više prikladnih modela rješavanja problema pomoću evolucijskih algoritama. Implementacijsko ostvarenje bit će detaljnije objašnjeno na jednom od modela. Izvođenje i testiranje provodit će se na dvije ponovljene igre: Zatvorenikova dilema i Kamen-škare-papir. 1

5 2. Ponovljene igre za više igrača Koncept ponovljenih igara koriste teoretičari igara, ekonomisti, sociolozi i drugi znanstvenici kao pojednostavljene modele raznih svakodnevnih društvenih situacija. Radi se o ponavljanju dobro poznate igre, najčešće u dva igrača, veći broj puta. Taj broj može biti poznat ili nepoznat, konačan ili beskonačan. Po čemu se ponovljene igre razlikuju od igara koje se igraju samo jednom? Igrajući jedan krug, igrači će uvijek odabrati onaj potez koji će im trenutno donijeti najveću dobit ili najmanji gubitak. Igrajući više iteracija, dobitak/gubitak se akumulira i više nije tako jednostavno odrediti koji je dugoročno najisplativiji potez. Postoji puno veći prostor mogućih strategija. Najčešći primjer koji se u teoriji igara uzima za objašnjavanje ponovljenih igara je Iterirana zatvorenikova dilema. 2.1 Iterirana zatvorenikova dilema Zatvorenikova dilema je igra s dva igrača: dvoje ljudi uhićeno zbog sumnje da su počinili zločin. Pritvorenici se ispituju zasebno i ne znaju što će reći onaj drugi. Svaki ima dva izbora: surađivati s drugim (ne reći ništa policiji) ili ga izdati. Pravila su sljedeća: Maksimalna kazna je 10 godina zatvora ukoliko prvi igrač surađuje a drugi ga izda, prvi dobiva 10 godina a drugi je slobodan (i obrnuto) o Vrlo loše za prvoga (0 bodova), vrlo dobro za drugoga (5 bodova) Ako oba igrača surađuju dobivaju po 2 godine zatvora o Relativno dobro za oboje (3 boda) Ako oba igrača izdaju drugoga dobivaju po 5 godina zatvora o Relativno loše za oboje (1 bod) 2

6 Tablica 2.1 Zatvorenikova dilema igrač 1, igrač 2 suradnja izdaja suradnja 3, 3 0, 5 izdaja 5, 0 1, 1 Gledajući svakog igrača zasebno, povlačenje poteza izdaja uvijek će biti bolje od povlačenja poteza suradnja (5>3 i 1>0). No, scenarij u kojem oba igrača povuku taj potez zapravo je ukupno najlošiji (donosi najmanje bodova samo 2). Kad se igra samo jednom, igrači će uvijek najbolje proći ako izdaju drugoga. Ako se igra više puta i rezultati se sumiraju, strategija se može promijeniti. U ovom slučaju izdaja nosi posljedice i stalno povlačenje tog poteza neće igraču donijeti maksimalni broj bodova. Pojasnimo to malo detaljnije na jednom primjeru. Uzmimo strategiju koja povlači nasumične poteze, bez obzira na to što je protivnik odigrao. Neka taj niz bude slijedeći (S = suradnja, I = izdaja): S S I S I S Pogledajmo rezultate u igri protiv nekih strategija: Tablica 2.2 Simulacija igre bez posljedica za izdaju strategija S S I S I S broj bodova samo suradnja S S S S S S

7 samo izdaja I I I I I I prvo suradnja zatim izdaja S S S I I I kopiranje S S I S I S Vidimo da stalno povlačenje poteza izdaja donosi najviše bodova. To se događa jer je strategija fiksna nema posljedica povlačenja određenog poteza. Ovakva igra se ne razlikuje od igranja samo jednom. Pogledajmo sada što će se dogoditi ako igrač bira svoj idući potez na osnovu onoga što je povukao njegov protivnik. Uzmimo strategiju koja uvijek surađuje, sve dok protivnik ne povuče potez izdaja. Strategija će kazniti protivnika time što će svaki idući potez do kraja igre biti izdaja (protivnik više ne može osvojiti niti 3 niti 5 bodova). 4

8 Tablica 2.3 Simulacija igre s posljedicama za izdaju samo suradnja S S S S S S S S S S S S samo izdaja S I I I I I I I I I I I pokušaj suradnje nakon izdaje S S S I I I S S I S I S Na primjeru vidimo da su posljedice za izdaju sve promijenile. Sada se najviše isplati surađivati. Ovaj princip pokazao se točan i za ostale strategije. Opisana igra gdje se Zatvorenikova dilema primjenjuje kroz više uzastopnih krugova naziva se Iterirana zatvorenikova dilema [1]. Teorija ove igre prvi put je opisana u knjizi The Selfish Gene Richarda Dawkinsa. Često se koristi za objašnjavanje evolucije kooperativnog ponašanja. Politolog Robert Axlerod održao je prvi turnir [2] s ciljem pronalaženja najbolje strategije koja će sakupiti najviše bodova u igri. Rezultate je iskoristio u svojoj knjizi Evolucija kooperacije. Nakon prvoga održano je još nekoliko turnira. 5

9 Razne strategije su se na turnirima pokazale više ili manje učinkovitima. No, najistaknutiji zaključak je da kooperativne strategije daju daleko bolje rezultate od nekooperativnih. Generalno, kooperativne strategije su one koje prve povlače potez suradnja i nastoje što više surađivati kroz igru. Ukoliko protivnik povuče potez izdaja, ove strategije će ga najčešće na neki način kazniti (također povući potez izdaja ). Nekooperativne strategije su one koje će pokušati sakupiti što više bodova nauštrb protivnika. Jedna strategija koja se na prvih nekoliko turnira izdvojila kao najbolja zove se Tit for Tat. Ideja je vrlo jednostavna: povući isti potez koji je protivnik povukao u prošlom potezu. Tablica 2.4 predstavlja pregled nekoliko jednostavnijih strategija koje su se pojavile na turnirima: Tablica 2.4 Neke od strategija za igru Iterirana zatvorenikova dilema Kooperativne strategije Always cooperate Tit for Tat Tit for two Tats Grudger Pavlov Opis Uvijek povlači potez suradnja Ponavlja zadnji potez protivnika, počinje suradnjom Surađuje, povlači potez izdaja tek nakon što je protivnik dvaput zaredom povukao taj potez Surađuje dok protivnik ne povuče potez izdaja, zatim stalno povlači potez izdaja Ponavlja svoj zadnji potez ako je imao dobar ishod (dobio 3 ili 5 bodova), započinje suradnjom Neutralne strategije Random Alternating moves Povlači nasumično odabran potez Prvi potez bira nasumično, svaki idući povlači suprotan potez 6

10 Nekooperativne strategije Always defect Suspicious Tit for Tat Uvijek povlači potez izdaja Kao Tit for Tat, ali počinje izdajom Često se ovim strategijama doda i element nasumičnosti. Npr, strategija Tit for Tat može s nekom malom vjerojatnošću povući potez izdaja iako je protivnik prethodno surađivao. 2.2 Ostali primjeri Postoji još primjera igara koje se mogu promatrati u kontekstu ponovljenih igara. Jedna od njih je i vrlo poznata Kamen-škare-papir. Malo je zahtjevnija od Iterirane zatvorenikove dileme jer ima 3 poteza, i nije toliko intuitivno interpretirati razne strategije. Bodovanje se može ostvariti na razne načine, na primjer: Tablica 2.5 Bodovanje u igri Kamen-škare-papir igrač 1, igrač 2 Kamen Škare Papir Kamen 1, 1 3, 0 0, 3 Škare 0, 3 1, 1 3, 0 Papir 3, 0 0, 3 1, 1 7

11 3. Evolucijski algoritmi i ECF Evolucijski algoritmi inspirirani su prirodom. Probleme rješavanju metodom pokušaja i pogrešaka na način da se populacije rješenja pokušavaju optimizirati kroz velik broj generacija. Generacije se mijenjaju i napreduju korištenjem operatora selekcije, križanja i mutacije. Za ocjenjivanje rješenja zadužena je funkcija dobrote. Budući da nije potrebno konkretno znanje o problemu ili znanstvenom području, evolucijski algoritmi mogu se primijeniti na širok spektar problema. Evolucijski_algoritam t = 0 generiraj početnu populaciju potencijalnih rješenja P(0); sve dok nije zadovoljen uvjet završetka evolucijskog procesa { t = t + 1; selektiraj P (t) iz P(t-1); križaj jedinke iz P (t) i djecu spremi u P(t); mutiraj jedinke iz P(t); } ispiši rješenje; ECF (Evolutionary Computation Framework) [3] je C++ razvojno okruženje namijenjeno primjeni evolucijskog programiranja. Sadrži velik broj algoritama, genotipova (načina prikaza rješenja), operatora mutacije i križanja i dodatnih mogućnosti. Za svaki problem koji se rješava pomoću ECF-a može se odabrati različit algoritam. Evolucijski algoritam koji je zadan u slučaju da se eksplicitno ne navede neki drugi zove se Steady State Tournament (turnir sa stalnim stanjem). Njega ćemo koristiti u ovom radu. 8

12 Steady_State_Tournament ponavljaj (za svaku generaciju){ } nasumce dodaj n jedinki u turnir; selektiraj najlošiju jedinku u turniru; nasumce odaberi dva roditelja od preostalih jedinki; zamijeni najgoru jedinku djetetom dobivenim križanjem roditelja; mutiraj dijete; 9

13 4. Traženje optimalne strategije igranja ponovljenih igara evolucijskim algoritmima 4.1 Postojeća rješenja Razni se znanstveni radovi bave tematikom traženja strategije igara u više igrača uz pomoć evolucijskih algoritama. Koriste se različiti pristupi koji se primjenjuju na različitim igrama. U radu [4] odabrana je igra Kamen-škare-papir uz korištenje genetskog algoritma. Rješenja su predstavljena nizom cijelih brojeva. Odluke koje strategija donosi bazirane su na posljednja tri poteza protivnika. Ovakav pristup pokazao se prilično jednostavnim i efikasnim. Genetski algoritam postigao je bolje rezultate od sistematske strategije (determinističkog računalnog algoritma), kao i od ljudskog protivnika. Postoje i zahtjevniji radovi, poput [6] i [7] gdje se genetski algoritam primijenio za pronalaženje strategija u igrama Dame i Backgammon. Korišteno je nekoliko genotipova: niz logičkih vrijednosti, niz realnih brojeva i aritmetičko stablo. Definirani su specifični genetski operatori za ovaj problem i pomno su odabrani parametri pokretanja kako bi se mogla dobiti dobra rješenja. Dodatno su se koristili i algoritmi pretraživanja prostora stanja. U oba rada zaključeno je da aritmetička stabla daju najbolje rezultate. Osim standardnih društvenih igara, traženje strategije genetskim algoritmima može se primijeniti na borbene računalne igre, kao što je napravljeno u radu [8]. Riječ je o igri M.U.G.E.N. (Slika 4.1). Cilj je stvoriti borca koji će na osnovu zadnjih nekoliko udaraca protivnika zaključiti koji je najpovoljniji idući potez. Borci (strategije) su potom testirani protiv dvadeset sedam ljudskih protivnika. Rezultati su pokazali da GA daje bolje rezultate od ručno kodiranih algoritama. 10

14 Slika 4.1 Igra M.U.G.E.N. 4.2 Idejno rješenje Imamo definiran problem (pronalaženje strategije), pronašli smo inspiraciju u postojećim rješenjima i imamo alat kojim možemo ostvariti rješenje (evolucijski algoritmi i ECF). Preostalo je glavno pitanje: na koji način iskoristiti alat za rješavanje problema? Kako bismo odgovorili na ovo pitanje, potrebno je definirati sljedeće: Način prikaza rješenja (genotip u ECF-u) Funkciju dobrote (način na koji se ocjenjuje svaka jedinka) Ulazne parametre Povezivanje vrijednosti rješenja s potezima u igri (dekodiranje) Broj generacija Veličinu populacije Dodatne parametre evolucijskog algoritma 11

15 4.2.1 Odabir genotipa Pri odabiru genotipa treba imati na umu što sve mogu biti ulazni podaci koji će pomoću u učenju strategije, te koji su izlazni podaci koji će na neki način prikazati niz poteza koji čine evoluiranu strategiju Genetski algoritam niz realnih brojeva Prva ideja inspirirana je radom [4]. Izlazne podatke možemo prikazati kao jedan niz realnih brojeva. Ulazni podaci su povijest zadnjih n poteza (npr. 3) protivničkog igrača. Izlazni podaci su potezi koji čine strategiju a izračunavaju se na osnovu povijesti. Uzmimo n=3 i igru Kamen-škare-papir koja ima 3 moguća poteza. U ovom slučaju postoji 3 3 vrijednosti koje je potrebno dekodirati. Svaki potez dobiva svoju vrijednost, na primjer kamen = 0, škare = 1, papir = 2. Ako je povijest 002, idući potez čitamo iz trećeg polja u bloku za dekodiranje: povijest dekodiranje poteza Opisani model ne bi bilo teško izvesti u ECF-u. Potrebno je samo odabrati genotip FloatingPoint kao niz realnih brojeva. Problem je ako želimo mijenjati ulazne parametre ili dodati nešto novo. Tada moramo mijenjati cijeli model, što povlači mijenjanje programskog kôda i ulazne datoteke (ako zbog parametara mijenjamo i veličinu polja) Neuronska mreža Postoje druga rješenja gdje je jednostavnije promijeniti ili dodati ulazne parametre. Jedno od njih su neuronske mreže. Bilo koji ulazni podatak koji želimo da utječe na strategiju predstavljat će jedan ulazni neuron. Izlazni neuron je samo jedan idući potez. Dakle, imamo 12

16 mrežu koja na temelju trenutnih vrijednosti definiranih ulaznih parametara kao izlaz daje idući potez strategije. Slika 4.2 Neuronska mreža U ECF-u postoji genotip neuronske mreže čije se težine uče korištenjem genetskih algoritama [5]. Koristeći ovaj genotip, dodavanje ulaznih parametara provodi se jednostavnije mijenjanjem strukture mreže u ulaznoj datoteci i eventualno manjim izmjenama programskog kôda Genetsko programiranje aritmetičko stablo Druga opcija s jednostavnijim promjenama ulaznih parametara je korištenje aritmetičkog stabla. Ovakav genotip rješenje prikazuje u obliku aritmetičke funkcije. U varijable funkcije uvrštavaju se ulazni podaci i na taj način dobivamo izlaz idući potez. 13

17 Slika 4.3 Primjer funkcije (10+sin(x)) * cos(9) Dodavanje ulaznih parametara obavlja se u ulaznoj datoteci, uz minimalne izmjene programskog kôda (povezivanje varijabli s vrijednostima ulaza). Prikaz aritmetičkim stablom je prilično intuitivan. Pod uvjetom da znamo kako se dekodiraju različiti potezi, ne bi bilo teško ručno napisati funkciju koja bi predstavljala pojedinu strategiju. Iz navedenih razloga, u ovom radu koristit ćemo aritmetičko stablo (genotip Tree u ECF-u). Problem bi se mogao riješiti i bilo kojim od ostalih navedenih rješenja Ocjenjivanje rješenja Svakoj jedinki (rješenju) trebamo pridijeliti ocjenu dobrote. Jedinke s boljim ocjenama će se propagirati u iduće generacije i na taj način ćemo dobiti rješenje kojim smo zadovoljni. Kako bismo ocijenili koliko je trenutna strategija dobra, potrebne su nam unaprijed poznate strategije. Naša strategija (jedinka x) odigrat će igru sa svakom od tih strategija (si), a suma dobivenih bodova bit će ocjena dobrote te strategije (4.3.1). Kroz generacije tu sumu ćemo pokušati maksimizirati. Ovaj način ocjenjivanja će maksimizirati sumu bodova igrača, bez obzira na protivnika. Ako ne želimo skupiti što više bodova u igri nego biti što bolji u odnosu na protivnika, kao ocjenu dobrote možemo staviti razliku između osvojenih bodova (4.3.2). 14

18 (4.3.1) (4.3.2) Ulazni parametri Postoje razne kombinacije ulaznih parametara koje možemo koristiti pri određivanju strategije. Ovo je dio gdje treba biti kreativan i pronaći što ekspresivnije parametre. Postoje osnovni parametri koji se nameću pri sastavljanju strategije. To su: zadnji potez igrača, zadnji potez protivnika i broj osvojenih bodova. Ako želimo da igračima bude poznat broj poteza u igri, može se dodati i parametar koji opisuje koliko je poteza ostalo do kraja. Osim tih parametara, u obzir možemo uzeti još mnogo toga: postotak pobjeda (ukupno ili u zadnjih nekoliko poteza), postotak povlačenja određenog poteza kod protivnika, je li protivnik u zadnjih n poteza povukao isti potez, reagira li protivnik uvijek isto nakon određenog poteza, Nisu svi parametri jednako relevantni za pojedinu igru. Neki od njih neće činiti nikakvu razliku u rezultatima. Više o provjeri utjecaja parametara na krajnji rezultat nalazi se u 6. poglavlju. 15

19 4.2.4 Prikaz poteza i dekodiranje izlazne vrijednosti aritmetičkog stabla Budući da radimo s aritmetičkim stablom, poteze u igri moramo moći prikazati u smislenom obliku za aritmetičke funkcije. Svakom potezu možemo pridijeliti neku proizvoljnu cjelobrojnu vrijednost. Nakon isprobavanja nekoliko kombinacija, odlučila sam u Iteriranoj zatvorenikovoj dilemi potezu izdaja pridijeliti broj 1, a suradnji broj 2. u igri Kamen-škare-papir potez kamen predstavlja broj 1, škare 2 a papir 3. Iduće je pitanje kako interpretirati izlaz aritmetičkog stabla. Nakon što pridijelimo vrijednosti varijablama stabla, dobit ćemo neki realni broj. Potrebno je odrediti intervale za svaki potez. Za igru Iterirana zatvorenikova dilema imamo samo dva poteza koje je potrebno dekodirati. Kao granicu sam uzela 1, što je prikazano na Slika 4.4. U igri Kamen-škare-papir tri su moguća poteza. Isprobavši razne kombinacije dekodiranja zaustavila sam se na onoj prikazanoj na Slika 4.5. Slika 4.4 Dekodiranje poteza Iterirane zatvorenikove dileme Slika 4.5 Dekodiranje poteza igre Kamen-škare-papir 16

20 5. Programska implementacija Problem je programski implementiran tako da se može lako nadograđivati i testirati. Postoji apstraktan razred Game koji treba naslijediti kako bi se dodala nova igra. Trenutno su napravljene igre Zatvorenikova dilema i Kamen-škarepapir. Za svaku od igara potrebno je napraviti i evaluacijski operator u kojem se dodjeljuje ocjena dobrote svakoj strategiji. Mogao bi se napraviti i univerzalni evaluator za sve igre, no zbog preglednosti pri testiranju različitih igara sam se odlučila za ovo rješenje. Kako bi se bilo koji operator mogao koristiti u algoritmima ECF-a, treba naslijediti razred EvaluateOp. Dijagram 5.1 Dijagram razreda za evaluacijske operatore i simulaciju igre Implementirane su i neke od prethodno opisanih strategija. Koriste se za učenje i ispitivanje evoluiranih strategija. Kako bi se dodalo novu strategiju, potrebno je naslijediti apstraktan razred PlayingStrategy. 17

21 Dijagram 5.2 Dijagram razreda za različite strategije Koristeći opisanu strukturu, pokretanje jedne igre od 100 rundi protiv zadane strategije izgledat će ovako: Game *g = new PrisonersDilemma(new AlwaysCooperate()); g -> play(100, tree, true); 18

22 6. Rezultati 6.1 Učenje i ispitivanje na jednoj strategiji Počnimo s jednostavnim pokaznim primjerom na igri Iterirana zatvorenikova dilema. Ideja je provesti učenje samo protiv jedne strategije i zatim provjeriti kako se ponaša dobiveno rješenje protiv te iste strategije. Koristimo osnovni skup ulaznih podataka navedenih u Tablica 6.1, te parametre ECF-a definirane u Tablica 6.2. Uz varijable ulaznih podataka u rješenju mogu se koristiti i konstante između 0 i 1. Uzeli smo malu dubinu stabla kako bi se rješenje moglo preglednije prikazati. Osim standardnih aritmetičkih operatora (+, -, * i /) dodali smo i operatore grananja IFPOS i IFLTE. Funkcija IFPOS prima tri argumenta. Provjerava vrijednost prvog argumenta: ako je pozitivan poprima vrijednost drugog, inače poprima vrijednost trećeg argumenta. IFLTE prima četiri argumenta. Uspoređuje prvi i drugi: ako je prvi veći ili jednak drugome poprima vrijednost trećeg argumenta, u suprotnom će poprimiti vrijednost četvrtog. Tablica 6.1 ulazni podaci x y z Moj zadnji potez Zadnji potez protivnika Osvojeni bodovi Tablica 6.2 Parametri ECF-a Minimalna dubina stabla 1 Maksimalna dubina stabla 3 Skup funkcija +, -, *, /, ifpos, iflte Skup terminala x, y, z, 0, 1 Veličina populacije 40 Broj generacija 100 Vjerojatnost mutacije

23 Uzmimo strategiju Grudger detaljno opisanu u 2. poglavlju. Budući da ona snažno kažnjava izdaju, strategija koja donosi najviše bodova je uvijek surađivati. I zaista, uz vrlo malo iteracija i osnovne parametre, uvijek ćemo dobiti očekivan scenarij prikazan na Slika 6.1. Kratica C označava potez suradnja a T izdaja. Slika 6.1 Izvođenje protiv iste strategije uz osnovne parametre Primjer konkretne aritmetičke funkcije koja predstavlja dobivenu strategiju je sljedeći: Na ovome primjeru može se lijepo vidjeti i što se dogodi ako je duljina igre poznata. Dodavši još jedan parametar ( n ) koji označava koliko je poteza ostalo do kraja dobivamo scenarij prikazan na Slika 6.2. Strategija je naučila da za izdaju u zadnjem potezu više ne snosi posljedice i tako je maksimizirala broj bodova. Slika 6.2 Izvođenje protiv iste strategije uz poznati broj poteza Sada naša funkcija izgleda ovako: 20

24 6.2 Broj generacija Kad smo se uvjerili da program radi kako bi trebao na učenju jedne strategije, možemo proširiti učenje na više strategija. Učenje ćemo pokrenuti koristeći svih osam implementiranih strategija (vidi 6.5). Potrebno je fiksirati neke važnije parametre ECF-a kako bi svako pokretanje bilo što efikasnije. Prvi takav parametar jest broj generacija. U potrazi za optimalnim rješenjem mogli bismo pustiti da se program izvodi iznimno dugo. No, to neće biti potrebno jer nakon nekog vremena dobrota rješenja više se neće značajno mijenjati. Uzastopnim pokretanjem programa u 10 ponavljanja za igru Iterirana zatvorenikova dilema (po 25 poteza u svakoj igri) došli smo do rezultata prikazanih na Slika 6.3. Zaključujemo da je dovoljno izvođenje zaustaviti nakon otprilike evaluacija (za još bolje rezultate mogli bismo uzeti oko evaluacija). Slika 6.3 Konvergencija maksimuma kroz generacije 21

25 6.3 Veličina populacije Idući parametar koji možemo optimirati je veličina populacije. Uzastopnim pokretanjem uz različitu veličinu populacije dobiveni su rezultati prikazani na Dijagram 6.1. Možemo zaključiti da su rezultati vrlo slični bez obzira na vrijednost ovog parametra. Uzimamo proizvoljnu vrijednost, recimo 40 jedinki u populaciji. Dijagram 6.1 Boxplot dijagram rezultata uz različite veličine populacije 6.4 Provjera utjecaja ulaznih parametara Osim osnovnih parametara navedenih u poglavlju 4.4, postoje mnogi drugi parametri koji mogu utjecati na konačno rješenje. Isprobajmo učenje strategije uz dva dodatna parametra: ukupni postotak pobjeda (broj između 0 i 1) i je li protivnik u zadnja 3 poteza povukao isti potez (zastavica koja poprima vrijednost 0 ili 1). Izvođenjem programa samo s osnovnim parametrima i potom uz dodan po jedan parametar dobili smo rješenje prikazano na Dijagram 6.2. Iz rezultata možemo zaključiti da dodani parametri negativno utječu na krajnje rješenje. Čini se da za igru Iterirana zatvorenikova dilema vrijedi manje je više i algoritam će bolje raditi koristeći samo osnovne parametre. 22

26 Dijagram 6.2 Boxplot dijagram utjecaja novih parametara 6.5 Učenje na grupi strategija Iterirana zatvorenikova dilema Strategije za učenje podijeljene su u tri grupe prema zajedničkim svojstvima kooperativnosti (Tablica 6.3). Ideja je uzeti svaku grupu zasebno kao grupu strategija za učenje. Dobivenu strategiju možemo primijeniti na igre sa svim preostalim strategijama i usporediti koliko je uspješna protiv određenih grupa. Parametri korišteni pri izvođenju navedeni su u Tablica 6.4. Tablica 6.3 Strategije podijeljene u grupe Grupa 1 Grupa 2 Grupa 3 Always Cooperate Tit for Tat Tit for Two Tats Alternating Moves Grudger Pavlov Suspicious Tit for Tat Always Betray 23

27 Tablica 6.4 Parametri ECF-a korišteni pri učenju na grupama strategija Minimalna dubina stabla 1 Maksimalna dubina stabla 5 Skup funkcija +, -, *, /, ifpos, iflte Skup terminala x, y, z, 0, 1 Veličina populacije 40 Broj generacija 300 Vjerojatnost mutacije 0.3 U Tablica 6.5 možemo vidjeti rezultate učenja na prvoj grupi strategija. To su vrlo kooperativne strategije gdje se do najpovoljnijeg ishoda dolazi uvijek surađivajući. Rezultati unutar iste skupine su dobri, protiv druge skupine su osrednji, a protiv zadnje strategije naša strategija je očekivano podbacila, jer je stalna suradnja ovdje najgori izbor. Tablica 6.5 Rezultati pri učenju s prvom grupom UČENJE: GRUPA 1 Prosjek Max Min Protivnikov prosjek Always Cooperate 44, ,29 Tit for Tat 27, ,29 Tit for Two Tats 34, ,71 Alternating Moves 22, ,29 Grudger 21, ,29 Pavlov 29, ,00 Suspicious Tit for Tat 25, ,00 Always Betray 2, ,57 Suma: 208,86 242,43 24

28 Druga skupina za učenje sakupila je najviše bodova (Tablica 6.6) a treća (Tablica 6.7) najmanje. Druga skupina uspješno je na strategiji Grudger naučila važnost surađivanja, a zbog strategije Pavlov uspjela je pametnije reagirati na poteze protivnika, odnosno povlačiti one poteze koji su se pokazali uspješnima. Tablica 6.6 Rezultati pri učenju s drugom grupom UČENJE: GRUPA 2 Prosjek Max Min Protivnikov prosjek Always Cooperate 43, ,00 Tit for Tat 24, ,00 Tit for Two Tats 29, ,29 Alternating Moves 31, ,14 Grudger 25, ,14 Pavlov 32, ,29 Suspicious Tit for Tat 14, ,00 Always Betray 9, ,57 Suma: 210,57 152,43 Za lošije rezultate treće skupine vjerojatno je kriva narav dviju strategija: iako obje započinju s izdajom, protiv strategije Suspicious Tit for Tat ipak se više isplati surađivati. To je razlog i zašto su strategije iz prve skupine ovdje sakupile više bodova od protivnika. Tablica 6.7 Rezultati pri učenju s trećom grupom UČENJE: GRUPA 3 Prosjek Max Min Protivnikov prosjek Always Cooperate 34, ,29 Tit for Tat 32, ,71 Tit for Two Tats 33, ,71 Alternating Moves 19, ,86 25

29 Grudger 17, ,71 Pavlov 21, ,29 Suspicious Tit for Tat 21, ,71 Always Betray 3, ,43 Suma: 183,14 286,71 Učenje sa svim strategijama polučilo je zadovoljavajući rezultat (Tablica 6.8). Ipak je skupljeno manje bodova nego učenjem s drugom grupom: te su se strategije pokazale najneutralnijima i mogu dobro aproksimirati ponašanje drugih strategija. Tablica 6.8 Rezultati pri učenju sa svim strategijama UČENJE: SVE STRATEGIJE Prosjek Max Min Protivnikov prosjek Always Cooperate 42, ,86 Tit for Tat 27, ,43 Tit for Two Tats 23, ,29 Alternating Moves 25, ,00 Grudger 27, ,43 Pavlov 34, ,00 Suspicious Tit for Tat 19, ,29 Always Betray 3, ,43 Suma: 202,86 200, Kamen-škare-papir Naposljetku, pogledajmo kako se isti pristup ponaša na drugoj igri. Uzmimo implementaciju igre Kamen-škare-papir, nekoliko osnovnih strategija i pokrenimo učenje na cijeloj grupi strategija. Parametri ECF-a ostali su isti (Tablica 6.4). Iz 26

30 rezultata prikazanih u Tablica 6.9 možemo zaključiti da naučena strategija prilično dobro pokriva svaku od ovih osnovnih strategija. Tablica 6.9 Rezultati za Kamen-škare-papir UČENJE: SVE STRATEGIJE Prosjek Max Min Protivnikov prosjek Tit for Tat 13, ,29 Scissors Only 19, ,57 Paper Only 18, ,57 Rock Only 17, ,29 27

31 7. Zaključak Nakon provedenog istraživanja, napravljene programske implementacije i testiranja možemo zaključiti da je moguće pronaći strategije igranja ponovljenih igara pomoću evolucijskih algoritama. Budući da nije sasvim jednostavno ručno odrediti koje su dobre strategije za pojedine igre, evolucijski algoritmi koji se oslanjaju na nasumičnost ovdje su se pokazali kao koristan alat. Strategije dobivene ovim postupkom mogu konkurirati dobrim strategijama do kojih se došlo na službenim turnirima. Dobivena rješenja mogla bi se i poboljšati novim parametrima i detaljnijim ispitivanjem. Prikazane su samo jednostavne igre, no model bi se mogao primijeniti i na složenije: šah, dama, poker, Backgammon U tom slučaju bi bilo potrebno proširiti model, napraviti neke preinake i osigurati veću procesorsku moć. 28

32 Literatura [1] Davis, W., Iterated Prisoner's Dilemma Online Game and Simulation, , [2] Chen, J., Lu, S., Vekhter, D. Game Theory Axelrod's Tournament [3] Jakobović, D. ECF - Evolutionary Computation Framework, , [4] Ali, F., Nakao, Z. Chen, Y., Playing the Rock-Paper-Scissors Game with a Genetic Algorithm ebd.pdf, [5] Bejuk, B., Pavlek, D., Škorjanc, I., Fulir, J., Jaklinović, K., Ulaga, L., Burda, M., Lovrenčić, R., ECF - NeuralNetwork, [6] Benbassat, A., Sipper, M., Evolving Lose-Checkers Players using Genetic Programming, [7] Azaria, Y., Sipper, M., GP-Gammon: Genetically Programming Backgammon Players, Genetic Programming and Evolvable Machines, Vol. 6, Broj 3 (2005.), str [8] Martinez-Arellano, G., Cant, R., Woods, D. Creating AI Characters for Fighting Games using Genetic Programming DOI /TCIAIG , IEEE Transactions on Computational Intelligence and AI in Games 29

33 Pronalaženje strategije u igrama s više igrača uz pomoć evolucijskih algoritama Sažetak U radu je objašnjena teorija ponovljenih igara s naglaskom na Iteriranu zatvorenikovu dilemu. Pojašnjene su strategije u toj igri, kako se ponašaju kooperativne i nekooperativne strategije. Ukratko je opisana glavna ideja evolucijskih algoritama. Objašnjeni su svi koraci potrebni za stvaranje programske implementacije: odabir genotipa, definicija funkcije dobrote, biranje ulaznih parametara, prikazivanje poteza u igri, traženje broja generacija te optimalne veličine populacije. Opisan je način na koji je organizirana programska implementacija. Naposljetku su prikazani dobiveni rezultati i zaključci. Ključne riječi: ponovljene igre, igre s više igrača, optimizacija strategije, evolucijski algoritmi, genetsko programiranje Strategy evolution in multiplayer games using evolutionary algorithms Abstract This paper describes the repeated games theory with emphasis on the Iterated Prisoners Dilemma game. This game's strategies are illustrated: how are the cooperative and non-cooperative strategies behaving. The main idea behind the evolutionary algorithms is briefly described. The paper goes through all the steps needed for creating the software implementation: choosing the genotype, defining the fitness function, choosing the input parameters, representing the game moves, finding the necessary number of generations and the optimal population size. It describes the organization of the implementation components. Finally, the results and conclusions are presented. Keywords: repeated games, multi-player games, strategy optimization, evolutionary algorithms, genetic programming 30

Рачунарска интелигенција

Рачунарска интелигенција Рачунарска интелигенција Генетско програмирање Александар Картељ kartelj@matf.bg.ac.rs Ови слајдови представљају прилагођење слајдова: A.E. Eiben, J.E. Smith, Introduction to Evolutionary computing: Genetic

Више

MAZALICA DUŠKA.pdf

MAZALICA DUŠKA.pdf SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ELEKTROTEHNIČKI FAKULTET Sveučilišni studij OPTIMIRANJE INTEGRACIJE MALIH ELEKTRANA U DISTRIBUCIJSKU MREŽU Diplomski rad Duška Mazalica Osijek, 2014. SADRŽAJ

Више

Neuronske mreže

Neuronske mreže Neuronske mreže: Genetički algoritmi Prof. dr. sc. Sven Lončarić Fakultet elektrotehnike i računarstva sven.loncaric@fer.hr http://ipg.zesoi.fer.hr 1 Uvod U mnogim primjenama pojavljuje se problem optimizacije

Више

SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br Optimizacija Booleovih funkcija za kriptografske postupke Marina Krče

SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br Optimizacija Booleovih funkcija za kriptografske postupke Marina Krče SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br. 3853 Optimizacija Booleovih funkcija za kriptografske postupke Marina Krček Zagreb, lipanj 2015. Zahvala Ovaj rad izrađen je

Више

Slide 1

Slide 1 OSNOVNI POJMOVI Naredba je uputa računalu za obavljanje određene radnje. Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Pisanje programa zovemo programiranje. Programski jezik

Више

8 2 upiti_izvjesca.indd

8 2 upiti_izvjesca.indd 1 2. Baze podataka Upiti i izvješća baze podataka Na početku cjeline o bazama podataka napravili ste plošnu bazu podataka o natjecanjima učenika. Sada ćete izraditi relacijsku bazu u Accessu o učenicima

Више

Algoritmi SŠ P1

Algoritmi SŠ P1 Županijsko natjecanje iz informatike Srednja škola 9. veljače 2018. RJEŠENJA ZADATAKA Napomena: kodovi za većinu opisanih algoritama dani su u Pythonu radi jednostavnosti i lakše čitljivosti. Zbog prirode

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

Državna matura iz informatike

Državna matura iz informatike DRŽAVNA MATURA IZ INFORMATIKE U ŠK. GOD. 2013./14. 2016./17. SADRŽAJ Osnovne informacije o ispitu iz informatike Područja ispitivanja Pragovi prolaznosti u 2014./15. Primjeri zadataka po područjima ispitivanja

Више

Classroom Expectations

Classroom Expectations АТ-8: Терминирање производно-технолошких ентитета Проф. др Зоран Миљковић Садржај Пројектовање флексибилних ; Математички модел за оптимизацију флексибилних ; Генетички алгоритми у оптимизацији флексибилних

Више

Algoritmi SŠ P1

Algoritmi SŠ P1 Državno natjecanje iz informatike Srednja škola Prvi dan natjecanja 2. ožujka 219. ime zadatka BADMINTON SJEME MANIPULATOR vremensko ograničenje 1 sekunda 1 sekunda 3 sekunde memorijsko ograničenje 512

Више

1. OPĆE INFORMACIJE 1.1. Naziv kolegija Programiranje 1.6. Semestar Nositelj kolegija dr.sc. Bruno Trstenjak, v. pred Bodovna vrijednost

1. OPĆE INFORMACIJE 1.1. Naziv kolegija Programiranje 1.6. Semestar Nositelj kolegija dr.sc. Bruno Trstenjak, v. pred Bodovna vrijednost 1. OPĆE INFORMACIJE 1.1. Naziv kolegija Programiranje 1.6. Semestar. 1.. Nositelj kolegija dr.sc. Bruno Trstenjak, v. pred. 1.7. Bodovna vrijednost (ECTS) 7 1.3. Suradnici 1.8. Način izvođenja nastave

Више

SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br.349 SIMBOLIČKO DERIVIRANJE UZ POMOĆ GENETSKOG PROGRAMIRANJA Luka Donđivić Z

SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br.349 SIMBOLIČKO DERIVIRANJE UZ POMOĆ GENETSKOG PROGRAMIRANJA Luka Donđivić Z SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br.349 SIMBOLIČKO DERIVIRANJE UZ POMOĆ GENETSKOG PROGRAMIRANJA Luka Donđivić Zagreb, lipanj, 2008. Sadržaj Uvod...1 Genetsko programiranje...2

Више

Microsoft Word - 6. RAZRED INFORMATIKA.doc

Microsoft Word - 6. RAZRED INFORMATIKA.doc Kriteriji ocjenjivanja i vrednovanja INFORMATIKA - 6. razred Nastavne cjeline: 1. Život na mreži 2. Pletemo mreže, prenosimo, štitimo, pohranjujemo i organiziramo podatke 3. Računalno razmišljanje i programiranje

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

2015_k2_z12.dvi

2015_k2_z12.dvi OBLIKOVANJE I ANALIZA ALGORITAMA 2. kolokvij 27. 1. 2016. Skice rješenja prva dva zadatka 1. (20) Zadano je n poslova. Svaki posao je zadan kao vremenski interval realnih brojeva, P i = [p i,k i ],zai

Више

My_P_Red_Bin_Zbir_Free

My_P_Red_Bin_Zbir_Free БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,

Више

Postojanost boja

Postojanost boja Korištenje distribucije osvjetljenja za ostvaranje brzih i točnih metode za postojanost boja Nikola Banić 26. rujna 2014. Sadržaj Postojanost boja Ubrzavanje lokalnog podešavanja boja Distribucija najčešćih

Више

SVEUČILIŠTE U ZAGREBU

SVEUČILIŠTE U ZAGREBU SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Zagreb, 2017. godina. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Mentori: Prof. dr. sc. Dragutin Lisjak,

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

18. ožujka Državno natjecanje / Osnovna škola (6. razred) Primjena algoritama (Basic/Python/Pascal/C/C++) Sadržaj Zadaci... 1 Zadatak: Kineski..

18. ožujka Državno natjecanje / Osnovna škola (6. razred) Primjena algoritama (Basic/Python/Pascal/C/C++) Sadržaj Zadaci... 1 Zadatak: Kineski.. 18. ožujka 2015. Državno natjecanje / Primjena algoritama (Basic/Python/Pascal/C/C++) Sadržaj Zadaci... 1 Zadatak: Kineski... 2 Zadatak: Zmija... 3 Zadatak: Vlakovi... 5 Zadaci U tablici možete pogledati

Више

Uvod u računarstvo 2+2

Uvod u računarstvo 2+2 Programiranje 2 doc.dr.sc. Goranka Nogo PMF Matematički odsjek, Zagreb Kontakt ured: 228, drugi kat e-mail: nogo@math.hr konzultacije: četvrtak, 12:00-14:00 petak, 11:00-12:00 neki drugi termin, uz prethodni

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija

Више

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK

Више

PuTTY CERT.hr-PUBDOC

PuTTY CERT.hr-PUBDOC PuTTY CERT.hr-PUBDOC-2018-12-371 Sadržaj 1 UVOD... 3 2 INSTALACIJA ALATA PUTTY... 4 3 KORIŠTENJE ALATA PUTTY... 7 3.1 POVEZIVANJE S UDALJENIM RAČUNALOM... 7 3.2 POHRANA PROFILA KORISNIČKIH SJEDNICA...

Више

Sos.indd

Sos.indd STRUČNI RADOVI IZVAN TEME Krešimir Šoš Vlatko Vučetić Romeo Jozak PRIMJENA SUSTAVA ZA PRAĆENJE SRČANE FREKVENCIJE U NOGOMETU 1. UVOD Nogometna igra za igrača predstavlja svojevrsno opterećenje u fiziološkom

Више

PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije

PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije korake. Uz dobro razrađen algoritam neku radnju ćemo

Више

Rano učenje programiranj

Rano učenje programiranj PREGLED ALATA ZA RANO UČENJE PROGRAMIRANJA Ivana Ružić, I. osnovna škola Čakovec Programiranje - nova pismenost Živimo u svijetu u kojem tehnologija brzo napreduje. Način na koji radimo, komuniciramo,

Више

Test ispravio: (1) (2) Ukupan broj bodova: 21. veljače od 13:00 do 14:00 Županijsko natjecanje / Osnove informatike Osnovne škole Ime i prezime

Test ispravio: (1) (2) Ukupan broj bodova: 21. veljače od 13:00 do 14:00 Županijsko natjecanje / Osnove informatike Osnovne škole Ime i prezime Test ispravio: () () Ukupan broj bodova:. veljače 04. od 3:00 do 4:00 Ime i prezime Razred Škola Županija Mentor Sadržaj Upute za natjecatelje... Zadaci... Upute za natjecatelje Vrijeme pisanja: 60 minuta

Више

SveuĊilište u Zagrebu

SveuĊilište u Zagrebu SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA DIPLOMSKI RAD br. 1883 Ocjena učinkovitosti asinkronih paralelnih evolucijskih algoritama Bruno Alfirević Zagreb, veljača 2011. i Sažetak Ovaj

Више

GLAZBENA UČILICA Marko Beus Filozofski fakultet u Zagrebu 098/ Sažetak Glazbena učilica je projekt osmišljen kao nadopuna

GLAZBENA UČILICA Marko Beus Filozofski fakultet u Zagrebu 098/ Sažetak Glazbena učilica je projekt osmišljen kao nadopuna GLAZBENA UČILICA Marko Beus Filozofski fakultet u Zagrebu beusmarko@gmail.com 098/938-8295 Sažetak Glazbena učilica je projekt osmišljen kao nadopuna nastavnom programu solfeggia u osnovnim glazbenim školama.

Више

ТЕОРИЈА УЗОРАКА 2

ТЕОРИЈА УЗОРАКА 2 ТЕОРИЈА УЗОРАКА 2 12. 04. 13. ВЕЖБАЊА Написати функције за бирање елемената популације обима N у узорак обима n, код простог случајног узорка, користећи алгоритме: Draw by draw procedure for SRS/SRSWOR

Више

Microsoft Word - Pravila_2019

Microsoft Word - Pravila_2019 ODBOJKAŠKI KLUB IOVALIUM IBAN: HR7823400091110618561 Zrinsko Frankopanska 42, 31550 Valpovo Matični broj: 2836939 OIB: 09488508406 Mob: 091 262 2043 4. Međunarodni odbojkaški turnir VALPOVO STREET VOLLEYBALL

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

ALIP1_udzb_2019.indb

ALIP1_udzb_2019.indb Razmislimo Kako u memoriji računala prikazujemo tekst, brojeve, slike? Gdje se spremaju svi ti podatci? Kako uopće izgleda memorija računala i koji ju elektronički sklopovi čine? Kako biste znali odgovoriti

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1.

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. MJERA I INTEGRAL završni ispit 6. srpnja 208. (Knjige bilježnice dodatni papiri i kalkulatori nisu dozvoljeni!). (8 bodova) Kao na predavanjima za d N sa P d : a b ] a d b d ] : a i b i R a i b i za i

Више

Univerzitet u Novom Sadu Tehnički fakultet Mihajlo Pupin Zrenjanin Seminarski rad Predmet: Konkuretno programiranje doc. dr Dejan Lacmanovic Zorica Br

Univerzitet u Novom Sadu Tehnički fakultet Mihajlo Pupin Zrenjanin Seminarski rad Predmet: Konkuretno programiranje doc. dr Dejan Lacmanovic Zorica Br Univerzitet u Novom Sadu Tehnički fakultet Mihajlo Pupin Zrenjanin Seminarski rad Predmet: Konkuretno programiranje doc. dr Dejan Lacmanovic Zorica Brkić SI 29/15 Zrenjanin 2018. Softversko inženjerstvo

Више

Microsoft Word - Seminar[godina]Prezime_Ime.docx

Microsoft Word - Seminar[godina]Prezime_Ime.docx SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA SEMINAR Naslov seminarskog rada Mario Kostelac Voditelj: Domagoj Jakobović Zagreb, travanj, 2012. Sadržaj 1. SAŽETAK... 1 2. UVOD... 2 3. GENETSKI

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

Objektno orjentirano programiranje 2P

Objektno orjentirano programiranje 2P Sveučilište u Rijeci ODJEL ZA INFORMATIKU Akademska 2016./2017. godina OBJEKTNO ORIJENTIRANO PROGRAMIRANJE Studij: Preddiplomski studij informatike (dvopredmetni) Godina i semestar: 2. godina, 3. semestar

Више

X PLATOON Pravila igre (v ) 1. PREGLED IGRE Cilj je osvojiti dobitnu kombinaciju na liniji za klađenje preko više rola. Podaci o igri :

X PLATOON Pravila igre (v ) 1. PREGLED IGRE Cilj je osvojiti dobitnu kombinaciju na liniji za klađenje preko više rola. Podaci o igri : X PLATOON Pravila igre (v 1.8 10.2.2016.) 1. PREGLED IGRE Cilj je osvojiti dobitnu kombinaciju na liniji za klađenje preko više rola. Podaci o igri : Tip Videoautomat Broj rola 5 Broj redaka 3 Broj linija

Више

Računarski praktikum I - Vježbe 07 - Podstrukture, const, reference

Računarski praktikum I - Vježbe 07 - Podstrukture, const, reference Prirodoslovno-matematički fakultet Matematički odsjek Sveučilište u Zagrebu RAČUNARSKI PRAKTIKUM I Vježbe 07 - Podstrukture, const, reference v2018/2019. Sastavio: Zvonimir Bujanović Podstrukture Član

Више

Programski jezik QBasic Kriteriji ocjenjivanja programiranje(b) - QBasic razred 42

Programski jezik QBasic Kriteriji ocjenjivanja programiranje(b) - QBasic razred 42 Kriteriji ocjenjivanja programiranje(b) - QBasic 5. - 8. razred 42 5. RAZRED - prisjeća sa pojmova: algoritam, algoritma slijeda i grananja, dijagrama toka, te ulaznih i izlaznih jedinica, ne shvaća njihovo

Више

Programski jezik QBasic Kriteriji ocjenjivanja programiranje(b) - QBasic razred 42

Programski jezik QBasic Kriteriji ocjenjivanja programiranje(b) - QBasic razred 42 Kriteriji ocjenjivanja programiranje(b) - QBasic 5. - 8. razred 42 5. RAZRED - prisjeća sa pojmova: algoritam, algoritma slijeda i grananja, dijagrama toka, te ulaznih i izlaznih jedinica, ne shvaća njihovo

Више

Орт колоквијум

Орт колоквијум II колоквијум из Основа рачунарске технике I - 27/28 (.6.28.) Р е ш е њ е Задатак На улазе x, x 2, x 3, x 4 комбинационе мреже, са излазом z, долази четворобитни BCD број. Ако број са улаза при дељењу

Више

Može li učenje tablice množenja biti zabavno?

Može li učenje tablice množenja biti zabavno? Mogu li besplatne igre na tabletima potaknuti učenike na učenje tablice množenja i dijeljenja? Sanja Loparić, prof. matematike i informatike Tehnička škola Čakovec Rovinj, 11.11.2016. Kad djeca nisu u

Више

atka 26 (2017./2018.) br. 102 NEKE VRSTE DOKAZA U ČAROBMATICI Jadranka Delač-Klepac, Zagreb jednoj smo priči spomenuli kako je važno znati postavljati

atka 26 (2017./2018.) br. 102 NEKE VRSTE DOKAZA U ČAROBMATICI Jadranka Delač-Klepac, Zagreb jednoj smo priči spomenuli kako je važno znati postavljati NEKE VRSTE DOKAZA U ČAROBMATICI Jadranka Delač-Klepac, Zagreb jednoj smo priči spomenuli kako je važno znati postavljati prava pitanja. U Jednako je važno znati pronaći odgovore na postavljena pitanja,

Више

Maretić M., Vrhovski Z., Purković, D. Multikriterijska optimizacija putanje četveropolužnog mehanizma zasnovana na genetičkim algoritmima ISSN

Maretić M., Vrhovski Z., Purković, D. Multikriterijska optimizacija putanje četveropolužnog mehanizma zasnovana na genetičkim algoritmima ISSN ISSN 1846-6168 UDK 531.1 MULTIKRITERIJSKA OPTIMIZACIJA PUTANJE ČETVEROPOLUŽNOG MEHANIZMA ZASNOVANA NA GENETIČKIM ALGORITMIMA MULTIPLE-CRITERIA OPTIMIZATION OF A FOURBAR MECHANISM TRAJECTORY BASED ON GENETIC

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte

Више

Teorija skupova - blog.sake.ba

Teorija skupova - blog.sake.ba Uvod Matematika je jedan od najomraženijih predmeta kod većine učenika S pravom, dakako! Zapitajmo se šta je uzrok tome? Da li je matematika zaista toliko teška, komplikovana? Odgovor je jednostavan, naravno

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski

Више

Programiranje 1 drugi kolokvij, 2. veljače Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje,

Programiranje 1 drugi kolokvij, 2. veljače Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, te službeni podsjetnik. Kalkulatori, mobiteli, razne neslužbene tablice, papiri i sl., nisu dozvoljeni! Sva rješenja napišite

Више

Bojenje karti iliti poučak o četiri boje Petar Mladinić, Zagreb Moj djed volio je igrati šah. Uvijek mi je znao zadati neki zanimljiv zadatak povezan

Bojenje karti iliti poučak o četiri boje Petar Mladinić, Zagreb Moj djed volio je igrati šah. Uvijek mi je znao zadati neki zanimljiv zadatak povezan Bojenje karti iliti poučak o četiri boje Petar Mladinić, Zagreb Moj djed volio je igrati šah. Uvijek mi je znao zadati neki zanimljiv zadatak povezan sa šahom. Tako mi je postavio sljedeći problem. Problem.

Више

Uvod u statistiku

Uvod u statistiku Uvod u statistiku Osnovni pojmovi Statistika nauka o podacima Uključuje prikupljanje, klasifikaciju, prikaz, obradu i interpretaciju podataka Staistička jedinica objekat kome se mjeri neko svojstvo. Svi

Више

(Kvantitativne metode odlu\350ivanja \226 problem optimalne zamjene opreme | math.e)

(Kvantitativne metode odlu\350ivanja \226 problem optimalne zamjene opreme | math.e) 1 math.e Hrvatski matematički elektronički časopis Kvantitativne metode odlučivanja problem optimalne zamjene opreme optimizacija teorija grafova mr. sc. Bojan Kovačić, dipl. ing. matematike, RRiF Visoka

Више

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.

Више

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p Numerička matematika 11. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. predavanje dodatak p. 1/46 Sadržaj predavanja dodatka

Више

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi 3. siječnja 0. od 3:00 do 4:00 RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovitelji Sadržaj Zadaci. 4.... Zadaci 5. 0.... 3 od 8 Zadaci. 4. U sljedećim pitanjima na pitanja odgovaraš upisivanjem

Више

48-Blazevic.indd

48-Blazevic.indd znanstveni radovi izvan teme Iva Blažević Damir Božić Jelena Dragičević Originalni znanstveni rad RELACIJE IZMEĐU ANTROPOLOŠKIH OBILJEŽJA I AKTIVNOSTI PREDŠKOLSKOG DJETETA U SLOBODNO VRIJEME 1. UVOD Tjelesno

Више

SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA Seminarski rad u okviru predmeta Računalna forenzika BETTER PORTABLE GRAPHICS FORMAT Matej

SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA Seminarski rad u okviru predmeta Računalna forenzika BETTER PORTABLE GRAPHICS FORMAT Matej SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA Seminarski rad u okviru predmeta Računalna forenzika BETTER PORTABLE GRAPHICS FORMAT Matej Crnac Zagreb, siječanj 2018 Sadržaj Uvod 2 BPG format

Више

Razred: sedmi

Razred: sedmi Osnovna škola Ivan Goran Kovačić, Slavonski Brod Učitelji: Marija Matić, prof., Blanka Rajšić, dipl. knjižničar Razred: sedmi Nastavno područje: jezično izražavanje Nastavna tema: Bilješka i natuknica

Више

Programiranje 2 0. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 0. predavanje p. 1/4

Programiranje 2 0. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 0. predavanje p. 1/4 Programiranje 2 0. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 0. predavanje p. 1/48 Sadržaj predavanja Ponavljanje onog dijela C-a koji

Више

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija

Више

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robotika Zagreb, 2014. MODEL PROCESA U PROSTORU STANJA

Више

Pojačavači

Pojačavači Programiranje u fizici Prirodno-matematički fakultet u Nišu Departman za fiziku dr Dejan S. Aleksić Programiranje u fizici dr Dejan S. Aleksić, vanredni profesor Kabinet 307 (treći sprat), lab. za elektroniku

Више

Računarski praktikum I - Vježbe 11 - Funktori

Računarski praktikum I - Vježbe 11 - Funktori Prirodoslovno-matematički fakultet Matematički odsjek Sveučilište u Zagrebu RAČUNARSKI PRAKTIKUM I Vježbe 11 - Funktori v2018/2019. Sastavio: Zvonimir Bujanović Funkcijski objekti (funktori) Objekt klase

Више

PowerPoint Presentation

PowerPoint Presentation Poslovna informatika Ekonomski fakultet u Osijeku Što se događa na internetu u 1 minuti? Par činjenica Svaki dan kreira se 2,5 kvintilijuna bajtova podataka! 90% svih podataka u svijetu kreirano je u zadnje

Више

2D računalna igra na engleskom jeziku namijenjena široj publici Žanr: Arcade / Story Teller / Rage game Autor: Vito Gambin 6.razred OŠ Fažana Mentor:

2D računalna igra na engleskom jeziku namijenjena široj publici Žanr: Arcade / Story Teller / Rage game Autor: Vito Gambin 6.razred OŠ Fažana Mentor: 2D računalna igra na engleskom jeziku namijenjena široj publici Žanr: Arcade / Story Teller / Rage game Autor: Vito Gambin 6.razred OŠ Fažana Mentor: Ana Mirić Sadržaj Sažetak Uvod 1. Space Rollers --------------------------------------------------4

Више

Problemi zadovoljavanja ogranicenja.

Problemi zadovoljavanja ogranicenja. I122 Osnove umjetne inteligencije Tema:. 7.1.2016. predavač: Darija Marković asistent: Darija Marković 1 I122 Osnove umjetne inteligencije. 2/26 (PZO) Problem zadovoljavanja ograničenja sastoji se od 3

Више

Електротехнички факултет Универзитета у Београду Катедра за рачунарску технику и информатику ИР3ПИА - Пројекат из предмета Програмирање интернет аплик

Електротехнички факултет Универзитета у Београду Катедра за рачунарску технику и информатику ИР3ПИА - Пројекат из предмета Програмирање интернет аплик ИР3ПИА - Пројекат из предмета Програмирање интернет апликација за јунско-јулски рок школске 2018/19. године Потребно је реализовати веб систем за играње квиза Слагалица, који се састоји од неколико игара.

Више

65. MEĐUNARODNI OMLADINSKI TURNIR KVARNERSKA RIVIJERA PROPOZICIJE Hrvatski nogometni klub RIJEKA, Rijeka organizator je 65. Međunarodnog omladinskog n

65. MEĐUNARODNI OMLADINSKI TURNIR KVARNERSKA RIVIJERA PROPOZICIJE Hrvatski nogometni klub RIJEKA, Rijeka organizator je 65. Međunarodnog omladinskog n 65. MEĐUNARODNI OMLADINSKI TURNIR KVARNERSKA RIVIJERA PROPOZICIJE Hrvatski nogometni klub RIJEKA, Rijeka organizator je 65. Međunarodnog omladinskog nogometnog turnira KVARNERSKA RIVIJERA 2017 Turnir počinje

Више

PowerPoint Presentation

PowerPoint Presentation Колоквијум # задатак подељен на 4 питања: теоријска практична пишу се програми, коначно решење се записује на папиру, кодови се архивирају преко сајта Инжењерски оптимизациони алгоритми /3 Проблем: NLP:

Више

Golden 7 Classic HTML5 na stolnim računalima i mobilnim uređajima. Vrsta igre: Video slot PVI (povratak vrijednosti igraču): 95,00 % Golden 7 Classic

Golden 7 Classic HTML5 na stolnim računalima i mobilnim uređajima. Vrsta igre: Video slot PVI (povratak vrijednosti igraču): 95,00 % Golden 7 Classic Golden 7 Classic HTML5 na stolnim računalima i mobilnim uređajima. Vrsta igre: Video slot PVI (povratak vrijednosti igraču): 95,00 % Golden 7 Classic tradicionalna je slot igra stare škole u kojoj nema

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

Sveučilište u Zagrebu Fakultet prometnih znanosti Zavod za inteligentne transportne sustave Katedra za primijenjeno računarstvo Vježba: #7 Kolegij: Ba

Sveučilište u Zagrebu Fakultet prometnih znanosti Zavod za inteligentne transportne sustave Katedra za primijenjeno računarstvo Vježba: #7 Kolegij: Ba Sveučilište u Zagrebu Fakultet prometnih znanosti Zavod za inteligentne transportne sustave Katedra za primijenjeno računarstvo Vježba: #7 Kolegij: Baze podataka Tema: Osnovna SELECT naredba Vježbu pripremili:

Више

KORISNIČKE UPUTE APLIKACIJA ZA POTPIS DATOTEKA

KORISNIČKE UPUTE APLIKACIJA ZA POTPIS DATOTEKA KORISNIČKE UPUTE APLIKACIJA ZA POTPIS DATOTEKA SADRŽAJ 1. UVOD... 3 1.1. Cilj i svrha... 3 1.2. Područje primjene... 3 2. POJMOVI I SKRAĆENICE... 4 3. PREDUVJETI KORIŠTENJA... 5 4. PREGLED APLIKACIJE...

Више

kriteriji ocjenjivanja - informatika 8

kriteriji ocjenjivanja - informatika 8 8. razred Nastavne cjeline: 1. Osnove informatike 2. Pohranjivanje multimedijalnih sadržaja, obrada zvuka 3. Baze podataka - MS Access 4. Izrada prezentacije 5. Timska izrada web stranice 6. Kritički odnos

Више

Na temelju članka 45. Zakona o igrama na sreću (NN br. 87/09), Uprava Interigre d.o.o., Karlovačka cesta 36b, Zagreb, dana godine donijela

Na temelju članka 45. Zakona o igrama na sreću (NN br. 87/09), Uprava Interigre d.o.o., Karlovačka cesta 36b, Zagreb, dana godine donijela Na temelju članka 45. Zakona o igrama na sreću (NN br. 87/09), Uprava Interigre d.o.o., Karlovačka cesta 36b, Zagreb, dana 10.05.2018. godine donijela je PRAVILA PROMOTIVNIH TURNIRA U IGRI NA SREĆU - GRAND

Више

TEORIJA SIGNALA I INFORMACIJA

TEORIJA SIGNALA I INFORMACIJA Multiple Input/Multiple Output sistemi MIMO sistemi Ulazi (pobude) Izlazi (odzivi) u 1 u 2 y 1 y 2 u k y r Obrada=Matematički model Načini realizacije: fizički sistemi (hardware) i algoritmi (software)

Више

INDIKATOR SVJETLA FUNKCIJE TIPKI 1. Prikazuje se temperatura i parametri upravljanja 2. Crveno svjetlo svijetli kad grijalica grije 3. Indikator zelen

INDIKATOR SVJETLA FUNKCIJE TIPKI 1. Prikazuje se temperatura i parametri upravljanja 2. Crveno svjetlo svijetli kad grijalica grije 3. Indikator zelen INDIKATOR SVJETLA FUNKCIJE TIPKI 1. Prikazuje se temperatura i parametri upravljanja 2. Crveno svjetlo svijetli kad grijalica grije 3. Indikator zelenog svjetla koji prikazuje sniženu temperaturu. Uključuje

Више

Programiranje 1

Programiranje 1 Sveučilište u Rijeci ODJEL ZA INFORMATIKU Ulica Radmile Matejčić 2, Rijeka Akademska 2018./2019. godina PROGRAMIRANJE 1 Studij: Preddiplomski studij informatike (jednopredmetni) Godina i semestar: 1. godina,

Више

Recuva CERT.hr-PUBDOC

Recuva CERT.hr-PUBDOC Recuva CERT.hr-PUBDOC-2019-5-379 Sadržaj 1 UVOD... 3 2 INSTALACIJA ALATA RECUVA... 4 3 KORIŠTENJE ALATA RECUVA... 7 4 ZAKLJUČAK... 13 Ovaj dokument izradio je Laboratorij za sustave i signale Zavoda za

Више

Natjecanje 2016.

Natjecanje 2016. I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka

Више

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba

Више

Microsoft PowerPoint - GR_MbIS_12_IDEF

Microsoft PowerPoint - GR_MbIS_12_IDEF Menadžment poslovnih informacionih sistema - 12 metode modeliranja funkcija pripremila Doc. dr Gordana Radić Integfated DEFinition Definicija: je metoda (jezik) modeliranja bazirana je na kombinaciji grafike

Више

Maksimalni protok kroz mrežu - Ford-Fulkerson, Edmonds-Karp

Maksimalni protok kroz mrežu - Ford-Fulkerson, Edmonds-Karp Maksimalni protok kroz mrežu - Ford-Fulkerson, Edmonds-Karp PMF-MO Seminar iz kolegija Oblikovanje i analiza algoritama 22.1.2019. mrežu - Ford-Fulkerson, Edmonds-Karp 22.1.2019. 1 / 35 Uvod - definicije

Више

OBRAZAC 1. Vrednovanje sveucilišnih studijskih programa preddiplomskih, diplomskih i integriranih preddiplomskih i diplomskih studija te strucnih stud

OBRAZAC 1. Vrednovanje sveucilišnih studijskih programa preddiplomskih, diplomskih i integriranih preddiplomskih i diplomskih studija te strucnih stud OBRAZAC 1. Vrednovanje sveucilišnih studijskih programa preddiplomskih, diplomskih i integriranih preddiplomskih i diplomskih studija te strucnih studija Tablica 2: Opis predmeta 1. OPĆE INFORMACIJE 1.1.

Више

Uvod u računarstvo 2+2

Uvod u računarstvo 2+2 Ulaz i izlaz podataka Ulaz i izlaz podataka Nakon odslušanog bit ćete u stanju: navesti sintaksu naredbi za unos/ispis znakova znakovnih nizova cijelih brojeva realnih brojeva jednostruke i dvostruke preciznosti

Више

Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013./ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani

Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013./ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013/2014 1 5 Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani s više obilježja (atributa), ta se obilježja mogu međusobno

Више

OSNOVNA ŠKOLA, VI RAZRED MATEMATIKA

OSNOVNA ŠKOLA, VI RAZRED MATEMATIKA OSNOVNA ŠKOLA, VI RAZRED MATEMATIKA UPUTSTVO ZA RAD Drage učenice i učenici, Čestitamo! Uspjeli ste da dođete na državno takmičenje iz matematike i samim tim ste već napravili veliki uspjeh Zato zadatke

Више

P11.3 Analiza zivotnog veka, Graf smetnji

P11.3 Analiza zivotnog veka, Graf smetnji Поједностављени поглед на задњи део компајлера Међурепрезентација (Међујезик IR) Избор инструкција Додела ресурса Распоређивање инструкција Инструкције циљне архитектуре 1 Поједностављени поглед на задњи

Више

Klasifikacija slika kucnih brojeva dubokim konvolucijskim modelima

Klasifikacija slika kucnih brojeva dubokim konvolucijskim modelima Klasifikacija slika kućnih brojeva dubokim konvolucijskim modelima Ivan Šego 4. srpnja 2018. Sadržaj 1 Uvod 2 Konvolucijske neuronske mreže Konvolucijski sloj Sloj sažimanja Potpuno povezani sloj 3 Ispitni

Више

PROPISNIK O KALENDARU NATJECANJA

PROPISNIK O KALENDARU NATJECANJA PRAVILNIK O KALENDARU NATJECANJA HRVATSKOG SPORTSKOG PLESNOG SAVEZA U Zagrebu 18.01.2018 godine. SADRŽAJ I. OPĆE ODREDBE... 2 II. UPIS SPORTSKIH PLESNIH NATJECANJA U KALENDAR NATJECANJA... 3 III. PRIJAVE

Више

knjiga 03.indd

knjiga 03.indd 15 3. Poglavlje Opće smjernice za aktivnosti učenja Ovo poglavlje opisuje neke od općih smjernica koje su pomogle roditeljima kada su svoju djecu učili novim vještinama. Pokušajte se koristiti ovim smjernicama

Више

DUBINSKA ANALIZA PODATAKA

DUBINSKA ANALIZA PODATAKA DUBINSKA ANALIZA PODATAKA () ASOCIJACIJSKA PRAVILA (ENGL. ASSOCIATION RULE) Studeni 2018. Mario Somek SADRŽAJ Asocijacijska pravila? Oblici učenja pravila Podaci za analizu Algoritam Primjer Izvođenje

Више

Matematika kroz igru domino

Matematika kroz igru domino 29. travnja 2007. Uvod Domino pločice pojavile su se u Kini davne 1120. godine. Smatra se da su pločice izvedene iz igraće kocke, koja je u Kinu donešena iz Indije u dalekoj prošlosti. Svaka domino pločica

Више

Pripreme 2016 Indukcija Grgur Valentić lipanj Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO

Pripreme 2016 Indukcija Grgur Valentić lipanj Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO Pripreme 016 Indukcija Grgur Valentić lipanj 016. Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO kandidate. Zato su zadaci podjeljeni u odlomka. U uvodu

Више

Hrvatska Lutrija d.o.o. Ulica grada Vukovara 74 Ur. br. HLOS /9931 Zagreb, Na osnovi članka 9. stavak 1 i 2, a u svezi članaka 10

Hrvatska Lutrija d.o.o. Ulica grada Vukovara 74 Ur. br. HLOS /9931 Zagreb, Na osnovi članka 9. stavak 1 i 2, a u svezi članaka 10 Hrvatska Lutrija d.o.o. Ulica grada Vukovara 74 Ur. br. HLOS-08-1-2017/9931 Zagreb, 21.02.2017. Na osnovi članka 9. stavak 1 i 2, a u svezi članaka 10-19 Zakona o igrama na sreću (NN br. 87/09), Uprava

Више

Osnovna škola „Đuro Ester“ Koprivnica

Osnovna škola „Đuro Ester“ Koprivnica Osnovna škola Đuro Ester Koprivnica Razvojno-pedagoška djelatnost Projekt: Deset dana bez ekrana Voditelji projekta: pedagoginja Jasna Relja, razrednice Dubravka Bijelić, Nada Čolak, Nina Ninković Skupina:

Више

SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br Autonomno kretanje virtualnih objekata Marin Hrkec Zagreb, lipanj 201

SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br Autonomno kretanje virtualnih objekata Marin Hrkec Zagreb, lipanj 201 SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br. 6404 Autonomno kretanje virtualnih objekata Marin Hrkec Zagreb, lipanj 2019. iii SADRŽAJ 1. Uvod 1 2. Korišteni alati i tehnologije

Више