SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE ZAVRŠNI RAD Josip Grubišić Split, 2016.
|
|
- Лена Гавриловић
- пре 5 година
- Прикази:
Транскрипт
1 SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE ZAVRŠNI RAD Josip Grubišić Split, 016.
2 SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE Proračun drvene konstrukcije dvostrešnog krovišta Završni rad Split, 016.
3 Sažetak: Tema ovog završnog rada je proračun i dimenzioniranje drvenog krovišta širine 14,0 m. Na konstrukciju djeluju stalna i promjenjiva djelovanja, a lokacija je grad Zagreb. Dimenzije i izgled glavnog nosača su zadani, a cilj rada je statički proračun i dimenzioniranje sastavnih dijelova konstrukcije te prostorna stabilizacija. Uz proračun priloženi su radionički nacrti konstrukcije sa riješenim detaljima. Ključne riječi: Drveno krovište, stalno djelovanje, promjenjivo djelovanje, donji pojas, gornji pojas, dijagonale, spoj Budget wooden structure gabled roof Abstract: The theme of this final paper is budget and dimensioning of a 14.0 meters wide wooden roof. The construction is effected by continuous and variable actions and the location is the city of Zagreb. The dimensions and layout of the main carriers are given and the goal of this paper is the static analysis and dimensioning of the components of the construction and its spatial stabilization. Manufacturing blueprints of the construction with solved details are attached along with the budget. Keywords: The wooden roof, permanent effect, variable effect, the lower belt, upper belt, diagonals, compound
4
5 1. TEHNIČKI OPIS..... ANALIZA OPTEREĆENJA STALNO DJELOVANJE PROMJENJIVO OPTEREĆENJE - DJELOVANJE SNIJEGA PROMJENJIVO OPTEREĆENJE - DJELOVANJE VJETRA DIJAGRAMI UNUTRAŠNJIH SILA KOMBINACIJA KOMBINACIJA GRANIČNO STANJE UPORABLJIVOSTI DIMENZIONIRANJE (REŠETKE) GORNJI POJAS DONJI POJAS DIJAGONALE DIMENZIONIRANJE PODROŽNICE STABILIZACIJA PRORAČUN SPOJA SPOJ DIJAGONALE D1 I D- VRH REŠETKE Nacrti... 3.
6 1. TEHNIČKI OPIS KONSTRUKTIVNI SUSTAV KROVA Projektom je zadan konstruktivni sustav rešetkasti nosač raspona L= 14,0 (m). Kut nagiba krova prema horizontali iznosi 0. Glavni nosači su paralelni u tlocrtu i nalaze se na međusobnom razmaku 5,0 m. Pokrov je sendvič panel, vrsta aluminijskog pokrova s kamenom vunom.stabilizacija gornjeg i donjeg pojasa predviđena je prostornim spregovima. 1.. STATIČKA ANALIZA SUSTAVA Statičkom analizom obuhvaćena su opterećenja koja djeluju na drvenu konstrukciju. Ta opterećenja i njihove kombinacije su: -stalni teret -snijeg -vjetar (1 s podtlačnim djelovanjem u potkrovlju i s tlačnim djelovanjem u potkrovlju). Konstrukcija se nalazi na području Zagreba, a lokalna kategorija terena je IV. Odgovarajući koeficijenti za vjetar i za snijeg uzeti su prema tome iz propisanih tablica. Za proračun uzimamo najnepovoljniju kombinaciju opterećenja. Za statičku shemu glavnog nosača uzeta je statički neodređena rešetka sa poluzglobovima na spojevima pojasa i dijagonala. Za proračun statičkog odgovora konstrukcije i izračun unutarnjih sila (momenti savijanja, poprečne i uzdužne sile) korišten je kompjutorski program ( SCIA ). Gornji i donji pojas su izračunati kao kontinuirane grede na koje su zglobno vezane dijagonale. Ovakvim načinom računanja dolazi se do stvarnog stanja naprezanja u presjecima rešetke. Izvršena je i analiza bočnog opterećenja u kombinaciji s vjetrom koji djeluje okomito na glavni nosač i izbočava ga. Cilj ovog proračuna je prostorna stabilizacija konstrukcije MATERIJALI IZRADE Poprečni presjeci: - Gornji i donji pojas (18 /18 cm) - Ispune (18 /10 cm, x 10/14) Drveni elementi konstrukcije izrađeni su od C4, uporabne klase 1. Karakteristične vrijednosti za ovu klasu : fc,0,k = 5,0 N/mm fm,k = 35,0 N/mm
7 fv,k =,7 N/mm E0,mean = N/mm NAČIN ZAŠTITE DRVENIH ELEMENATA Zaštitu nosivih elemenata potrebno je provesti s odgovarajućim vodootpornim zaštitnim sredstvima. Zaštita se provodi s tri premaza, s tim da je dva premaza potrebno nanijeti u tvornici prije transporta, a treći završni nakon potpunog zatvaranja konstrukcije. Boja zaštitnog sredstva je prozirno smeđa u tonu drva nosača. Zaštita metalnih dijelova i spajala izvodi se pocinčavanjem na uobičajen način, a u skladu s važećim propisima sve metalne dijelove prije pocinčavanja potrebno je obraditi.. 5. MONTAŽA I TRANSPORT Posebnu pažnju treba obratiti na montažu i transport da bi se izbjegla nepotrebna oštećenja. Izvođač je dužan izraditi plan montaže nosača kojeg treba zajedno s transportnim planom dostaviti nadzornoj službi na suglasnost. Glavni nosači se izrađuju na podu, zatim se pomoću dizalice podižu u vertikalni položaj i to tako da se podignu prvo glavni nosači povezani spregom, a nakon toga ostali. Zatim se međusobno povezuju preko podrožnice. Konačno na već postavljenu konstrukciju postavlja se pokrov. Nosači se trebaju transportirati u takvom položaju u kakvom će kasnije primiti opterećenje. Transport i montažu treba obaviti tako da se izbjegnu moguća oštećenja dijelova konstrukcije. 3
8 OPĆI PODACI, GEOMETRIJA I ANALIZA OPTEREĆENJA Glavni nosač: Trokutasti rešetkasti nosač Raspon: L= 14,0 m Nagib krovne plohe: α= 0,0 Visina nosača: H=,5 m Razmak nosača: n= 5,0 m Razmak vertikala: a= 3,5 m (a'= 3,7 m) a = 3,5 m a a = = 3,7 m cos(0 ). ANALIZA OPTEREĆENJA.1. Stalno djelovanje -sendvič panel g=0.15 kn/m - podrožnice + spregovi + instalacije: g=0.35 kn/m Ukupno : g = 0.50 kn/m G = g n a = 0,50 5,0 3,7 = 9,3 kn 4
9 .. Djelovanje snijega s = sk * µi* ce * ct [ kn/m ] sk- karakteristična vrijednost opterećenja na tlu u kn/m sk - 1 kn/m <=> za Zagreb, područje A, do100 m nadmorske visine - Nagib krova : µi - koeficijent oblika za opterećenje snijegom, očitamo ga ovisno o α, α je nagib krova μi =0,8 ce- koeficijent izloženosti (1,0) ct- toplinski koeficijent (1,0) Opterećenje snijegom preko cijele krovne površine: s= 1,0 * 0,8 * 1,0 * 1,0 = 0,8[ kn/m ] S=s * n * a' = 0,8 * 5,0 * 3,7 = 14,88 kn S = 7,44kN.3. Proračun djelovanja vjetra - pritisak vjetra na vanjske površine: w e = q p z e c pe kn/m - pritisak vjetra na unutarnje površine: w i = q p z i c pi kn/m q p z e =>pritisak vjetra pri udaru 5
10 ze(i) => referentna visina za vanjski (unutarnji) pritisak cpe => vanjski koeficijent pritiska cpi => unutarnji koeficijent pritiska Određivanje pritiska brzine vjetra pri udaru Osnovni pritisak vjetra qbodređuje se prema formuli: q b = 1 ρ v b [ kn/m ] gdje je: ρ- gustoća zraka (usvaja se vrijednost iz propisa 1,5 kg/m 3 ) vb - osnovna brzina vjetra. q b = 1 ρ v b = 1 1,5 0 = 50,0 N/m Osnovna brzina vjetra vb računa se dalje prema izrazu: gdje je: vb = cdir * cseason * vb,0[ m/s ] vb,0 fundamentalna vrijednost osnovne brzine vjetra (očitava se iz karte) cdir faktor smjera vjetra (obično se uzima 1,0) cseason faktor doba godine (obično se uzima 1,0). vb = cdir * cseason * vb,0 = 1,0 * 1,0 * 0,0 = 0,0 m/s Određivanje koeficijenta vanjskog tlaka Za dvostrešne krovove koeficijenti vanjskog pritiska određuju se tako da se krovna površina podijeli na zone, dok se referentna visina ze uzima kao ukupna visina građevine. Koeficijenti tlaka za svako područje ovise o veličini površine opterećene zone građevine. Dopušta se linearna interpolacija između kutova nagiba krovova (osim kad je kut između -5º i +5º, tada se koriste podaci za ravne krovove). 6
11 Nakon dobivenih vrijednosti vb i vb,0, definira se srednja brzina vjetra vm(z) iznad terena: gdje je: v m z = c r z c 0 z v b [m/s cr(z) faktor hrapavosti terena c0(z) faktor orografije ili opisivanje brežuljaka ili gora (obično se uzima 1,0). v m z = c r z c 0 z v b = 0,53 1,0 0,0 = 10,6 m/s z = 10 m IV. kategorija terena z0 zmin = 1,0 10 Faktor hrapavosti cr(z)određuje se prema: c r z = c r z min gdje su: c r z = k r ln ( z z 0 ) za z zmin za zmin z zmax z0 duljina hrapavosti kr faktor terena ovisan o duljini hrapavosti zmin minimalna visina hrapavosti zmax maksimalna visina hrapavosti (usvaja se vrijednost 00 m). 5 m 10 m 00 m c r z = k r ln ( z z 0 ) = 0,3 ln ( 10 1,0 ) = 0,53 Faktor terena kr određuje se prema: k r = 0, 19 ( z 0 z 0,II ) gdje je: z0,ii duljina hrapavosti za kategoriju terena II (prema tablici iznosi 0,05 m). Očitano iz tablice za IV. kategoriju terena: z0 = 1,0 m, zmin = 10 m. k r = 0,19 ( z 0,07 0 ) = 0,19 ( 1,0 0,07 z 0,II 0,05 ) = 0,3 0,07 Intenzitet turbulencije Iv(z) računa se prema izrazu: I v z = k I c 0 z ln ( z z 0 ) gdje je: ki faktor turbulencije (obično se uzima vrijednost 1,0). 7
12 I v z = k I c 0 z ln ( z ) = 1 1 ln ( 10 ) = 0,43 z 0 1,0 Pritisak brzine vjetra pri udaru qp(z) se računa kao: q p z = c e z q b = I v z 1 ρ v m z gdje je: ce(z) faktor izloženosti i odnosi se na pritisak te ovisi o visini iznad terena z i kategoriji terena q p z = I v z 1 ρ v m z = ,43 1 1,5 10,6 = 81,60 N/m q p z = 0,8 kn/m Parametar e: e = b ili h (odabire se manja vrijednost) = 50 ili 0 e = 0 m ; e/4 = 5 m, e/10 = m 8
13 - za krovna područja (dvostrešni krov) α=0º F G H I J c pe1-0,77-0,7-0,7-0,4-0,83 c pe + 0,37 + 0,37 + 0, PODRUČJE G H I J c pe1-0,7-0,7-0,4-0,83 c pe + 0,37 + 0, W e1-0,0-0,08-0,11-0,3 W e 0,10 0,08 0,00 0,00 W 1 (W e1 + W i1) W (W e1 - W i) -0,6-0,14-0,17-0,9-0,1 0,0-0,003-0,15 W 3 (W e - W i1) W 4 (W e + W i) 0,04 0,0-0,06-0,06 0,18 0,16 0,08 0,08 Wi1 = q p z * ( +0,) = 0,8 * 0, = 0,06 kn/m Wi = q p z * (- 0,3) = 0,8 * (- 0,3) = - 0,08 kn/m 9
14 IZNOS KONCENTRIRANIH SILA: ZONA G: W1 = -0,6 * n * a' = - 0,6 * 5,0 * 3,7 = -4,84 kn W4 = 0,18 * n * a' = 0,18 * 5,0 * 3,7 = 3,35 kn ZONA H: W1 = - 0,14 * n * a' = - 0,14 * 5,0 * 3,7 = -,60 kn W4 = 0,16 * n * a' = 0,16 * 5,0 * 3,7 =,98 kn ZONA I: W1 = - 0,17 * n * a' = - 0,17 * 5,0 * 3,7 = -3,16 kn W4 = 0,08 * n * a' = 0,08 * 5,0 * 3,7 = 1,49 kn ZONA J: W1 = - 0,9 * n * a' = - 0,9 * 5,0 * 3,7 = -5,39 kn W4 = 0,08 * n * a' = 0,08 * 5,0 * 3,7 = 1,49 kn W1/ = -,4 kn W4/ = 1,67 k W1/ = -1,30 kn W4/ = 1,49 kn W1/ = -1,58 kn W4/ = 0,74 kn W1/ = -,69 kn W4/ = 0,74 kn Djelovanje vjetra (W1) Djelovanje vjetra (W4) 10
15 3. DIJAGRAMI UNUTRAŠNJIH SILA 3.1. Kombinacija GSN=1,0 G + 1,0 G1 + 1,50 W1 N-dijagram max vlačna sila = 5,55 kn ; max tlačna sila= -5,90 kn N [kn] M-dijagram max moment = 0,36 knm ; max moment = -0,6 knm M [knm] T-dijagram max vlačna sila = 0,31 knm ; max tlačna sila = -0,34 knm T [kn] 11
16 3.. Kombinacija GSN=1,35 G + 1,35 G1+ 1,50 S + 0,6 * 1,50 W4 N-dijagram max vlačna sila = 158,56 kn ; max tlačna sila= - 169,19 kn N [kn] M-dijagram max moment =,87 knm ; max moment= - 1,17 knm M [knm] T-dijagram max vlačna sila = 1,07 ; max tlačna sila= - 1,08 kn T [kn] 1
17 4. GRANIČNO STANJE UPORABLJIVOSTI GSU- progib G GSU- progib G1 GSU- progib snijeg (S) 13
18 GSU- progib vjetar (W1) GSU- progib vjetar (W4) Konačne vrijednosti deformacija Wfin=Winst*(1+kdef) Stalno opterećenje G Wg=Winst*(1+kdef)= 1,3 *(1+0,6)=,08 mm kdef=0,60 - stalno Stalno opterećenje G1 Wg1=Winst*(1+kdef)= 5,5*(1+0,6)= 8,8 mm kdef=0,60 - stalno Promjenjivo opterećenje S Ws=Winst*(1+kdef)= 8,8 *(1+0,50)= 13, mm kdef=0,50 dugo Promjenjivo opterećenje W1 Ww1=Winst*(1+kdef)= 1,8 *(1+0,5) =,5 mm 14
19 kdef=0,5 srednje trajno Promjenjivo opterećenje W4 Ww4=Winst*(1+kdef)= 1, *(1+0,5)= 1,5 mm kdef=0,5 srednje trajno 1.) Wq inst L/300 L= 14,0 m Ws, inst. = 8,8 mm < 14000/300 = 46,67 mm Ww4.inst.. = 1,mm < 14000/300 = 46,67 mm.) Wfin - Wg,inst L/00 Wfin =Wg + Wg1+ ( Ws+ Ww4)*0,9=,08+8,8+(1,+1,5)*0,9 = 3,1mm Wg,inst = 1,3mm 3,1 1,3 < 14000/00 1,91 mm < 70 mm 15
20 16 5. DIMENZIONIRANJE ( REŠETKE ) UPORABNA KLASA 1 SREDNJETRAJNO OPTEREĆENJE 1,3 0,8 mod M k Karakteristične vrijednosti :,,,,,,, / 690 / / 14,0 / 1,0 /,70 / 4,0 mm N G mm N E mm N f mm N f mm N f mm N f mean mean o k o t k o c k v m k Proračunske vrijednosti : , 0.05,0, mod,0,,0, mod,0,, mod,, mod, / / 7333, / 8,6 1,3 14,0 0,8 / 1,9 1,3 1,0 0,8 / 1,66 1,3,70 0,8, / 14,8 1,3 4,0 0,8 mm N G G mm N E E mm N f k f mm N f k f mm N f k f mm N f k f mean mean m k t d t m k c d c m k v d V m m k m d
21 5.1. Gornji pojas (POZ 1) Materijal: C4, uporabna klasa 1 Djelovanja: Nsd= - 169,19 kn (tlak) Msd=,87 knm Vsd= 1,08 kn Poprečni presjek: b/h = 18/18 cm Geometrijske karakteristike: A= b * h = 180 * 180 = 3400 mm W = = mm 3 leff,y = 3,7 m = leff,z Karakteristične vrijednosti čvrstoća i modula: Uporabna klasa 1, srednjetrajno opterećenje kmod = 0,8 fc,0,k = 1,0 N/mm fm,k = 4,0 N/mm fv,k =,7 N/mm E0,mean = N/mm f c,0,d = k mod f c,0,k = 0,8 1 = 1,9 N/mm f m,d = k mod f m,k = 0,8 4 = 14,8 N/mm f v,d = k mod f v,k = 0,8,7 = 1,66 N/mm E 0,05 = E 3 0,mean = = 7333,3 N/mm 3 Proračun naprezanja: σ c,0,d = F d A σ m,d = M d W τ d = H d S I b = 169, =, = 1,5 H d A = 5, N/mm =,95 N/mm = 1,5 1, = 0,033 N mm 1 1 k c = min ; 1,0 1,0 k c = k + k { λ 1,34 + 1,34 1, = 0,53 rel,c } k = 0,5 [1 + β c (λ rel,c 0,3) + λ rel,c ] = 0,5 [1 + 0, (1, 0,3) + 1, ] = k = 1,34 λ y = l eff,y 0,89 b = 37 0,89 18 = 71,51 17
22 β c = 0, ( za puno drvo) λ rel,c,y = λ π f c,0,k E 0,05 = 71,51 π ,3 = 1, Dokaz stabilnosti i nosivosti: σ c,0,d + σ m,d 1,0 k c f c,0,d k m f m,d τ d f v,d 1,0 5, 0,53 1,9 +, ,8 = 0,96 < 1,0 0,033 = 0,0 < 1,0 1,5 ISKORISTIVOST: 96 % Zaključak: pretpostavljeni poprečni presjek zadovoljava uvjete nosivosti i stabilnosti! 5.. Donji pojas a) Donji dio ( POZ ) Materijal: C4, uporabna klasa 1 Djelovanja: Nsd= 158,56 kn Msd=0,66 knm Vsd= 0,44 kn Poprečni presjek: b/h = 18/18 Geometrijske karakteristike: A= b * h =180 * 180 = 3400 mm AN=0,8 * b * h =0,8 * 180 * 180 = 590 mm W = leff,y = 3,95 m = mm 3 Karakteristične vrijednosti čvrstoća i modula: Uporabna klasa 1,srednjetrajno opterećenje kmod = 0,8 fc,0,k = 1,0 N/mm f c,0,d = k mod f c,0,k = 0,8 1 = 1,9 N/mm 18
23 ft,0,k = 14,0 N/mm fm,k = 4,0 N/mm fv,k =,7 N/mm E0,mean = N/mm f t,0,d = k mod f t,0,k = 0,8 14 = 8,6 N/mm f m,d = k mod f m,k = 0,8 4 = 14,8 N/mm f v,d = k mod f v,k = 0,8,7 = 1,66 N/mm E 0,05 = E 3 0,mean = = 7333,3 N/mm 3 l eff,y h b = 18 = 1,94 < 140 k m = 1,0 Proračun naprezanja: σ t,0,d = F d 158, = = 6,18 N/mm A N 590 σ m,d = M d W τ m,d = H d S I b = 0, = 1,5 H d A Dokaz stabilnosti i nosivosti: = 0,68 N/mm = 1,5 0, σ t,0,d + σ m,d 1,0 f t,0,d k m f m,d = 0,014 N mm τ m,d f v,d 1,0 6,18 8,6 + 0, ,8 = 0,76 < 1,0 0,014 = 0,009 < 1,0 1,5 ISKORISTIVOST: 76 % Zaključak: pretpostavljeni poprečni presjek zadovoljava uvjete nosivosti i stabilnosti! 5.3. Dijagonale a) Dijagonale D1 i D4 (POZ 3) Materijal: C4, uporabna klasa 1 Djelovanja: Nsd= - 34,65 kn (tlak) Poprečni presjek: b/h = 18/10 cm Geometrijske karakteristike: A= b * h = 180 * 100 = mm W = = mm 3 6 leff,y = 1,33 m 19
24 Karakteristične vrijednosti čvrstoća i modula: Uporabna klasa 1,srednjetrajno opterećenje kmod = 0,8 fc,0,k = 1,0 N/mm f c,0,d = k mod f c,0,k = 0,8 1 = 1,9 N/mm Proračun naprezanja: σ c,0,d = F d A = 34, = 1,93 N/mm k c = min 1 ; 1,0 k + k { λ rel,c } 1,0 k c = 1 0,61 + 0,61 0,44 = 0,97 k = 0,5 [1 + β c (λ rel,c 0,3) + λ rel,c ] = 0,5 [1 + 0, (0,44 0,3) + 0,44 ] = k = 0,61 λ y = l eff,y 0,89 b = 133 0,89 18 = 5,57 β c = 0, ( za puno drvo) λ rel,c,y = λ π f c,0,k E 0,05 = 5,57 π ,3 = 0,44 Dokaz stabilnosti i nosivosti: σ c,0,d k c f c,0,d 1,0 1,93 = 0,15 < 1,0 0,97 1,9 ISKORISTIVOST: 15% Zaključak: pretpostavljeni poprečni presjek zadovoljava uvjete nosivosti i stabil a) Dijagonale D i D3(POZ 4) Materijal: C4, uporabna klasa 1 Djelovanja: Nsd= 53,13 kn (vlak) Poprečni presjek: b/h = x 10/14 cm Geometrijske karakteristike: AN=0,8 * b * h =*0,8 *100 * 140= 400 mm A= * b * h = * 100 * 140 = 8000 mm 0
25 W = = 36666,67 mm 3 Karakteristične vrijednosti čvrstoća i modula: Uporabna klasa 1,srednjetrajno opterećenje kmod = 0,8 ft,0,k = 14,0 N/mm f t,0,d = k mod f t,0,k = 0,8 14 = 8,6 N/mm Proračun naprezanja: σ t,0,d = F d 53, = =,37 N/mm A N 400 Dokaz stabilnosti i nosivosti: σ t,0,d f t,0,d 1,0 ISKORISTIVOST: 8 %,37 8,6 = 0,8 < 1,0 Zaključak: pretpostavljeni poprečni presjek zadovoljava uvjete nosivosti i stabilnosti! 1
26 5.4. Podrožnica (P) UPORABNA KLASA 1 (C4) SREDNJETRAJNO OPTEREĆENJE k mod M 0,8 1,3 Karakteristične vrijednosti Proračunske vrijednosti fc,0,k = 1,0 N/mm ft,0,k = 14,0 N/mm fm,k = 4,0 N/mm fv,k =,7 N/mm E0,mean = N/mm f c,0,d = k mod f c,0,k = 0,8 1 = 1,9 N/mm f t,0,d = k mod f t,0,k = 0,8 14 = 8,6 N/mm f m,d = k mod f m,k = 0,8 4 = 14,8 N/mm f v,d = k mod f v,k = 0,8,7 = 1,66 N/mm E 0,05 = E 3 0,mean = = 7333,3 N/mm 3 Podrožnicu tretiramo kao prostu gredu zbog jednostavnosti proračuna i na taj način smo na strani sigurnosti! OPTEREĆENJE PODROŽNICE : Opterećenje rastavljamo u međusobno okomita smjera (y i z smjer)! w=0,5 kn/m ; s=0,8 kn/m ; g=0,35 kn/m Djelovanja: Gk = 0,35 * 3,7 = 1,30 kn/m' Qs (snijeg) = 0,8 * 3,7 =,97 kn/m' Qk (vjetar) = 0,16 * 3,7 = 0,59 kn/m' Poprečni presjek: b/h = 0/ cm
27 α=0 razmak podrožnica = 3,7 m Geometrijske karakteristike: A= b * h = 00 * 0 = mm W y = = ,3 mm 3 W z = = ,67 mm 3 Gy = Gk * sin(0º) = 1,30 * sin(0º) = 0,44 kn/m' Gz = Gk * cos(0º) = 1,30* cos(0º) = 1, kn/m' Qs,y = Qk * sin(0º) =,97 * sin(0º) = 1,01kN/m' Qs,z = Qk * cos(0º) =,97 * cos(0º) =,79 kn/m' Eyd = 1,35 Gy + 1,50 Sy = 1,35 * 0,44 + 1,50 * 1,01 =,10 kn/m' Ezd = 1,35 Gz + 1,50 Sz + 0,6 * 1,50 * W4 = 1,35 * 1, + 1,50 *,79 + 0,6 * 1,50 * 0,16 = 5,97 kn/m' Vrijednosti reznih sila: Ez, d l 5,795,0 M y d 18,09kN / 8 8 E y, d l,1 5,0 M z, d 6,56kN / m' 8 8 E y, d l,1 5,0 Ty, d 5, 5kN Ez, d l 5,97 5,0 Tz, d 14, 9kN, m ' σ m,y,d = M y,d 18, = = 11,1N/mm W Y ,3 σ m,z,d = M z,d 6, = = 4,47 N/mm W z ,67 l eff h b = 00 =,75 < 140 k m = 1,0 Karakteristične vrijednosti čvrstoća i modula: Uporabna klasa 1,srednjetrajno opterećenje kmod = 0,8 fm,k = 4,0 N/mm f m,d = k mod f m,k = 0,8 4 = 14,8 N/mm 3
28 fv,k =,7 N/mm f v,d = k mod f v,k = 0,8,7 = 1,66 N/mm kred = 0,7 τ y,d = 1,5 T y,d A = 1,5 5, = 0,1 N mm τ z,d = 1,5 T z,d A Dokaz: = 1,5 14, = 0,33 N mm σ m,y,d k m f m,d + k red σ m,z,d f m,d 1,0 11,1 4,47 + 0,7 = 0,97 < 1,0 1,0 14,8 14,8 ( τ y,d ) + ( τ z,d ) f v,d f v,d 1,0 ( 1,1 1,5 ) + ( 0,33 1,5 ) = 0,61 < 1,0 Zaključak: pretpostavljeni poprečni presjek zadovoljava uvjete nosivosti i stabilnosti! 5.5. Stabilizacija GRANIČNO STANJE NOSIVOSTI SPREGOVA: -dokaz nosivosti i stabilnosti elemenata koji pridržavaju tlačni pojas glavnog nosača Vjetar zabat: WB= qp * (0,8 + 0,3) = 0,8 * 1,1 = 0,31 kn/m PZAB= WB * a' * h' = 0,31 * 3,7 * 8,75 = 10,09 kn Vjetar trenje: cfr = 0,01 WTR= qp * cfr = 0,8 * 0,01 = 0,003 kn/m PTR= WTR * a' * e/ = 0,003 * 3,7* 10,0 = 0,11 kn 4
29 P = 1,50 * (PZAB + PTR) = 1,50 * (10,09 + 0,11) = 15,3kN P/ = 7,65 kn Dijagram naprezanja sekundarnih nosača: DOKAZ NOSIVOSTI ZA DIJAGONALE Maksimalna vlačna sila : Nd= 13,48 kn N t,r,d = A N 0,9 f uk γ M0 N d d= ϕ1 mm A = d π 4 = 1, π 4 = 1,13 cm N t,r,d = 0,8 1,13 0,9 51,0 1,1 = 37,7 kn > 13,48kN 5
30 DOKAZ NOSIVOSTI I STABILNOSTI ZA ZA GORNJI POJAS Materijal: C4, uporabna klasa 1 Djelovanja: Nsd= - 169,19 kn (tlak) Msd=,87 knm N01sd= - 7,73 kn (tlak) Poprečni presjek: b/h = 18/18 cm Geometrijske karakteristike: A= b * h = 180 * 180 = 3400 mm W = = mm 3 leff,y = 3,7 m = leff,z (b/b presjek) Karakteristične vrijednosti čvrstoća i modula: Uporabna klasa 1, srednjetrajno opterećenje kmod = 0,8 fc,0,k = 1,0 N/mm fm,k = 4,0 N/mm fv,k =,5 N/mm E0,mean = N/mm f c,0,d = k mod f c,0,k = 0,8 1 = 1,9 N/mm f m,d = k mod f m,k = 0,8 4 = 14,8 N/mm f v,d = k mod f v,k = 0,8,5 = 1,5 N/mm E 0,05 = E 3 0,mean = = 7333,3 N/mm 3 Proračun naprezanja: σ c,0,d = F d A σ m,d = M d W σ 01,d = N 01sd A = 169, =, = 7, = 5, N/mm =,97 N/mm = 0,3 N/mm k c = min 1 ; 1,0 k + k { λ rel,c } 1,0 k c = 1 1,3 + 1,3 1,1 = 0,54 k = 0,5 [1 + β c (λ rel,c 0,3) + λ rel,c ] = 0,5 [1 + 0, (1,1 0,3) + 1,1 ] = k = 1,3 λ y = l eff,y 0,89 b = 37 0,89 18 = 71,51 6
31 β c = 0, ( za puno drvo) λ rel,c,y = λ π f c,0,k E 0,05 = 71,51 π ,3 = 1,1 Dokaz stabilnosti i nosivosti: σ c,0,d k c f c,0,d + σ m,d k m f m,d + σ 01,d k c f c,0,d 1,0 ISKORISTIVOST: 97 % 5, 0,54 1,9 +, ,8 + 0,3 = 0,97 = 1,0 1 1,9 Zaključak: pretpostavljeni poprečni presjek zadovoljava uvjete nosivosti i stabilnosti! DOKAZ NOSIVOSTI I STABILNOSTI ZA ZA PODROŽNICE NV,d= 18,78 kn sila u vertikali (podrožnici) od stabilizacije Vrijednosti reznih sila: E l 5,795,0 M 8 8 E y, d l,1 5,0 M z d 6,56kN / 8 8 E y, d l,1 5,0 Ty, d 5, 5kN Ez, d l 5,97 5,0 Tz, d 14, 9kN z, d y, d 18,09kN / m, m ' ' σ m,y,d = M y,d 18, = = 11,1N/mm W Y ,3 σ m,z,d = M z,d 6, = = 4,47 N/mm W z ,67 σ V,d = N V,d A = 18, = 0,43 N/mm l eff h b = =,75 < 140 k m = 1,0 7
32 Karakteristične vrijednosti čvrstoća i modula: Uporabna klasa 1,srednjetrajno opterećenje kmod = 0,8 fc,0,k = 1,0 N/mm fm,k = 4,0 N/mm fv,k =,5 N/mm f c,0,d = k mod f c,0,k = 0,8 1 = 1,9 N/mm f m,d = k mod f m,k = 0,8 4 = 14,8 N/mm f v,d = k mod f v,k = 0,8,5 = 1,5 N/mm kred = 0,7 τ y,d = 1,5 T y,d A = 1,5 5, = 0,1 N mm τ z,d = 1,5 T z,d A = 1,5 14, = 0,33 N mm Dokaz nosivosti i stabilnosti: σ m,y,d k k m f red + σ m,z,d + σ V,d 1,0 m,d f m,d f c,0,d 11,1 4,47 + 0,7 1,0 14,8 14,8 + 0,43 = 1,0 1,0 1,9 ( τ y,d ) + ( τ z,d ) f v,d f v,d 1,0 ( 1,1 1,5 ) + ( 0,33 1,5 ) = 0,61 < 1,0 Zaključak: pretpostavljeni poprečni presjek zadovoljava uvjete nosivosti i stabilnosti! 8
33 6. PRORAČUN SPOJA SPOJ DIJAGONALE D I D3 VRH REŠETKE (TRNOVI) Osnovni materijal: puno drvo, x 10/14 cm Nt,d = 53,13 kn Uporabna klasa 1 klasa čvrstoće C4 Trnovi: Tϕ1/S355 f u,k = 510 N/mm f t,0,d = 0,8 4,0 1,3 = 8,6 N/mm 1) TRNOVI: - Karakteristične vrijednosti tlačne čvrstoće po plaštu rupe i momenta popuštanja f h,0,k = 0,08 (1 0,01 d) ρ k = f h,0,k = 0,08 (1 0,01 1) 350 = 5,5 N/mm f u,k = 510 N/mm M y,k = 0,3 f u,k d,6 = 0, ,6 = Nmm 9
34 - Karakteristična vrijednost nosivosti trna po rezu R k = β 1 + β M y,k f h,0,k d = R k = ,5 1 = 7700 N Proračunska vrijednost nosivosti trna po rezu R d1 = k mod R k = 0, γ M 1,1 = 5600 N Proračunska vrijednost nosivosti za dvorezni spoj R d = R d1 = 5600 = 1100 N n req = F d R d = 53, = 5 kom Smanjenje zbog većeg broja trnova u nizu n ef = [min {n; n 0,9 4 a 1 }] 10 d α = 0 n=3 a1=50 mm 90 α 90 + n α 90 n ef = [min {3; 3 0, }] =,35 Dokaz: Efektivni broj trnova n = n ef =,35 = 4,70 N t,d 53, = = 1,0 < 1,0 n R d 4,
35 - Tražene debljine elemenata za punu nosivost 1) Vezice t req = 1,15 ( β 1 + β + ) M y,k f h,0,k d = t req = 1,15 ( ) = 70,55 mm ,5 1 t req = 70,55 mm < t = 100 mm Uvjet zadovoljen! ) Štap 4 t req = 1, β M y,k f h,0,k d = 4 t req = 1, ,5 1 = 58,45 mm < t DP = 1800 mm Uvjet zadovoljen! Konstruktivni zahtjevi - međusobno sa vlakancima a 1,req = (3 + cosα) d = (3 + cos0) 1 = 43,1 mm a 1,req = 43,1 mm < 50 mm (odabrano) - od opterećenog ruba a 1,t,req = max{80; 7 d} = max{80; 7 1} = 84 mm a 1,t,req = 80 mm < 85 mm (odabrano) - međusobno i od neopterećenog ruba a,req = a,c,req = 3 d = 3 1 = 36 mm < 40 mm (odabrano) 31
36 7. NACRTI 3
37 POGLED - SADRŽAJ LISTA STUDENTI GENERALNI NACRT GLAVNOG NOSAČA M 1:00 JOSIP GRUBIŠIĆ ZADATAK DIMENZIONIRANJE SUSTAVA PREDMET DRVENE KONSTRUKCIJE DATUM: FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE U SPLITU SPREGOVI (S) SEKUNDARNI KROVNI NOSAČI (PODROŽNICE - P) SPREGOVI (S) SPREGOVI (S) SPREGOVI (S) DP - donji pojas GP - gornji pojas D1 - dijagonala 1 D - dijagonala D3 - dijagonala 3 D4 - dijagonala D1 (POZ 3)-18/10 GP (POZ 1)-18/ D (POZ 4)- X 10/ DP1 (POZ )-18/ D3 (POZ 4)- X 10/ DP (POZ )-18/18 GP (POZ 1)-18/18 D4 (POZ 3)-18/10 1 SPREGOVI (S) SPREGOVI (S) GORNJI POJAS (POZ 1) SEKUNDARNI KROVNI NOSAČI (PODROŽNICE-P) POGLED 1-1 GENERALNI NACRT GLAVNOG NOSAČA MJ 1:00
38 POZ 5- P 0/ POZ 3- D1 18/10 POZ 4- D X 10/14 A POZ 1- GP 18/18 POZ 1- GP 18/ POZ 4- D3 X 10/ POZ - DP1 18/18 POZ - DP 18/ FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE KOLEGIJ: OSNOVE DRVENIH KONSTRUKCIJA RADIONIČKI NACRT GLAVNOG NOSAČA GRAĐEVINA: Ak. GODINA: 015/016 KROVNA KONSTRUKCIJA M 1:5 STUDENT: JOSIP GRUBIŠIĆ RADIONIČKI NACRT GLAVNOG NOSAČA M 1:5 POZ POZ 1 OZNAKA GP ZA 1 OKVIR: GRAĐA DIMENZIJE C4 18/18 l (m) KOMADA 7,43 POZ DP1 C4 18/18 1,00 1 POZ DP C4 18/18,00 1 POZ 3 D1, D4 C4 18/10 1,33 POZ 4 D, D3 C4 x10/14 3,95 POZ 3- D4 18/10 POZ 6 P C4 0/
39 40 M 0 M 0 5 X T 1 S DETALJ SPOJA A M 1:10 5 X T 1 S POZ 1- GP 18/ POZ 4- D X 10/ *10 14 POZ 4- D3 X 10/14 *10 14 PRESJEK 1-1 M 0 POZ 1- GP 18/18 T 1 S POZ 4- D X 10/ POZ 4- D X 10/14 GRAĐEVINSKO-ARHITEKTONSKI FAKULTET U SPLITU KOLEGIJ: OSNOVE DRVENIH KONSTRUKCIJA SPOJ U SLJEMENU Ak. GODINA: 015/016 GRAĐEVINA: KROVNA KONSTRUKCIJA M 1:10 STUDENT: Josip Grubišić
Slide 1
Betonske konstrukcije 1 - vežbe 4 - Dijagram interakcije Građevinski fakultet Univerziteta u Beogradu Betonske konstrukcije 1 1 Građevinski fakultet Univerziteta u Beogradu Betonske konstrukcije 1 1 2
ВишеSlide 1
BETONSKE KONSTRUKCIJE 2 vježbe, 12.-13.12.2017. 12.-13.12.2017. DATUM SATI TEMATSKA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponavljanje poznatih postupaka
ВишеIvan GLIŠOVIĆ Boško STEVANOVIĆ Marija TODOROVIĆ PRORAČUN DRVENIH KONSTRUKCIJA PREMA EVROKODU 5 Građevinski fakultet Univerziteta u Beogradu Akademska
Ivan GLIŠOVIĆ Boško STEVANOVIĆ Marija TODOROVIĆ PRORAČUN DRVENIH KONSTRUKCIJA PREMA EVROKODU 5 Građevinski fakultet Univerziteta u Beogradu Akademska misao, Beograd Dr Ivan Glišović, dipl.inž.građ., docent
ВишеBetonske i zidane konstrukcije 2
5. STTIČKI PRORČUN PLOČE KRKTERISTIČNOG KT PROGR IZ KOLEGIJ BETONSKE I ZIDNE KONSTRUKCIJE 44 15 4 4 5. Statički proračun ploče karakterističnog kata 5.1. naliza opterećenja Stambeni prostor: 15 4 5, parket
ВишеMicrosoft Word - MABK_Temelj_proba
PRORČUN TEMELJNE STOPE STTIČKI SUSTV, GEOMETRIJSKE KRKTERISTIKE I MTERIJL r cont d eff r cont d eff Dimenzije temelja: a 300 cm b 300 cm Ed,x Ed h 80 cm zaštitni sloj temelja c 4,0 cm XC θ dy Ed Dimenzije
ВишеMicrosoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc
Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru
Вишеma??? - Primer 1 Spregnuta ploca
Primer 1 - proračun spregnute ploče na profilisanom limu 1. Karakteristike spregnute ploče Spregnuta ploča je raspona 4 m. Predviđen je jedan privremeni oslonac u polovini raspona ploče u toku građenja.
ВишеSLOŽENA KROVIŠTA
ARHITEKTONSKE KONSTRUKCIJE 3 GRADITELJSKA TEHNIČKA ŠKOLA ZAGREB Nastavnica: D. Javor, dipl. ing. arh. Šk. god. 2018./2019. 1 SLOŽENA KROVIŠTA 2 SLOŽENA KROVIŠTA IZVODE SE NA OBJEKTIMA S RAZVIJENOM TLOCRTNOM
ВишеMicrosoft Word - GI_novo - materijali za ispit
GEOTEHNIČKO INŽENJERSTVO DIJAGRAMI, TABLICE I FORMULE ZA ISPIT ak.god. 2011/2012 2 1 υi s yi = pb I syi Ei Slika 1. Proračun slijeganja vrha temelja po metodi prema Mayne & Poulos. Slika 2. Proračun nosivosti
Вишеma??? - Primer 6 Proracun spregnute veze
Primer 6 Proračun spregnute veze Odrediti proračunski moment nosivosti spregnute veze grede i stuba prikazane na skici. Stub je izrađen od vrućevaljanog profila HEA400, a greda od IPE500. Veza je ostvarena
ВишеPismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što
Pismeni ispit iz MEHNIKE MTERIJL I - grupa 1. Kruta poluga, oslonjena na oprugu i okačena o uže D, nosi kontinuirano opterećenje, kao što je prikazano na slici desno. Odrediti: a) silu i napon u užetu
ВишеИспитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредит
Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредити max D 4 услед задатог покретног система концентрисаних
ВишеStručno usavršavanje
TOPLINSKI MOSTOVI IZRAČUN PO HRN EN ISO 14683 U organizaciji: TEHNIČKI PROPIS O RACIONALNOJ UPORABI ENERGIJE I TOPLINSKOJ ZAŠTITI U ZGRADAMA (NN 128/15, 70/18, 73/18, 86/18) dalje skraćeno TP Čl. 4. 39.
ВишеPRIMER 1 ISPITNI ZADACI 1. ZADATAK Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o
PRIMER 1 ISPITNI ZADACI Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o Homogena pločica ACBD, težine G, sa težištem u tački C, dobijena
ВишеМатрична анализа конструкција
. 5 ПРИМЕР На слици. је приказан носач који је састављен од три штапа. Хоризонтални штапови су константног попречног пресека b/h=./.5 m, док је коси штап са линеарном променом висине. Одредити силе на
ВишеPredavanje 8-TEMELJI I POTPORNI ZIDOVI.ppt
1 BETONSKE KONSTRUKCIJE TEMELJI OBJEKATA Prof. dr Snežana Marinković Doc. dr Ivan Ignjatović Semestar: V ESPB: Temelji objekata 2 1.1. Podela 1.2. Temelji samci 1.3. Temeljne trake 1.4. Temeljne grede
ВишеKralja Tomislava 51A, Beli Manastir, TEL: +385(0)31/ , FAX: +385(0)31/ , NAZIV I ADRESA INVESTITORA:
Kralja Tomislava 5A, Beli Manastir, TEL: +85()/7 7, FAX: +85()/75, E-MAIL: planumprojekt@gmail.com NAZIV I ADRESA INVESTITORA: OPĆINA KNEŽEVI VINOGRADI HRVATSKE REPUBLIKE 9 KNEŽEVI VINOGRADI OIB: 5989
ВишеMicrosoft PowerPoint - 5_Zidane_konstrukcije_Proracun.ppt
SVEUČILIŠTE U SPLITU GRAĐEVINSKO-ARHITEKTONSKI FAKULTET 1/35 Doc. dr. sc. Boris Trogrlić Stručni studij građevinarstva kolegij: ZIDANE KONSTRUKCIJE (Skripta je namijenjena studentima II. god. stručnog
ВишеRešetkasti nosači
Elementi opterećeni savijanjem - nosači Metalne konstrukcije 1 P6-1 Slučajevi naprezanja Savijanje dominantan vid naprezanja! Savijanje može biti posledica sledećih naprezanja: čisto pravo savijanje (M
ВишеMicrosoft Word - Projekt sanacije broj 251 R00.doc
INSTITUT IGH d.d. / Odjel za energetiku Broj: 72430-251/2017 GRAĐEVINA: KONCERTNA DVORANA VATROSLAVA LISINSKOG RAZINA: PROJEKT SANACIJE BROJ : 72430-251/2017 1. TEHNIČKI OPIS DATUM: Srpanj, 2017. Projekt
ВишеRešetkasti nosači
Kombinovana naprezanja etalne konstrukcije 1 P8-1 Kontrole graničnih stanja kod kombinovanih naprezanja Ekscentrično zatezanje ( t + ) ULS - kontrole nosivosti poprečnih preseka na pojedinačna dejstva
ВишеSlide 1
Завод за унапређивање образовања и васпитања Аутори: Наставни предмет: MилојеЂурић,професор,Техничка школа Шабац, Марија Пилиповић,професор, Техничка школа Шабац, Александар Ђурић,професор,Мачванска средња
ВишеMicrosoft Word - TPLJ-januar 2017.doc
Београд, 21. јануар 2017. 1. За дату кружну плочу која је еластично укљештена у кружни прстен и оптерећења према слици одредити максимални напон у кружном прстену. М = 150 knm/m p = 30 kn/m 2 2. За зидни
ВишеCVRSTOCA
ČVRSTOĆA 12 TEORIJE ČVRSTOĆE NAPREGNUTO STANJE Pri analizi unutarnjih sila koje se pojavljuju u kosom presjeku štapa opterećenog na vlak ili tlak, pri jednoosnom napregnutom stanju, u tim presjecima istodobno
ВишеIZJAVA O SVOJSTVIMA Nr. LE_ _01_M_WIT-PM 200(1) Ova je verzija teksta prevedena s njemačkog. U slučaju dvojbe original na njemačkom ima predn
IZJAVA O SVOJSTVIMA Nr. LE_5918240330_01_M_WIT-PM 200(1) Ova je verzija teksta prevedena s njemačkog. U slučaju dvojbe original na njemačkom ima prednost. 1. Jedinstvena identifikacijska oznaka proizvoda
ВишеM e h a n i k a 1 v e ž b e 4 / 2 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Pozn
M e h a n i k a 1 v e ž b e 4 / 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Poznata su opterećenja F 1 = kn, F = 1kN, M 1 = knm, q =
ВишеProracun strukture letelica - Vežbe 6
University of Belgrade Faculty of Mechanical Engineering Proračun strukture letelica Vežbe 6 15.4.2019. Mašinski fakultet Univerziteta u Beogradu Danilo M. Petrašinović Jelena M. Svorcan Miloš D. Petrašinović
ВишеEvidencijski broj: J11/19 KNJIGA NACRTI SANACIJA ZATVORENOG SUSTAVA ODVODNJE U KM , AUTOCESTA A1 ZAGREB - SPLIT - DUBROVNIK, DIONICA OTO
Evidencijski broj: J/9 KNJIGA.. NACRTI SANACIJA ZATVORENOG SUSTAVA ODVODNJE U KM +, AUTOCESTA A ZAGREB - SPLIT - DUBROVNIK, DIONICA OTOČAC - PERUŠIĆ separator (post) spojno okno (zamjena postojećeg okna)
ВишеRucka.dft
Средња машинска школа РАДОЈЕ ДАКИЋ АУТОДИЗАЛИЦА ТАРА Милош Мајсторовић Средња машинска Прорачун: школа Аутодизалице " Тара " Пројекат РАДОЈЕ ДАКИЋ Лист ПРОРАЧУН НОСИВОСТИ АУТОДИЗАЛИЦЕ " ТАРА " ПОДАЦИ:
ВишеToplinska i električna vodljivost metala
Električna vodljivost metala Cilj vježbe Određivanje koeficijenta električne vodljivosti bakra i aluminija U-I metodom. Teorijski dio Eksperimentalno je utvrđeno da otpor ne-ohmskog vodiča raste s porastom
ВишеM e h a n i k a 1 v e ž b e 4 /1 1 Primer 3.1 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. q = 0
M e h a n i k a 1 v e ž b e 4 /1 1 Primer 3.1 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. q = 0.8 kn m, L=4m. 1. Z i = Z A = 0. Y i = Y A L q + F
ВишеАНАЛИЗА ПРОБЛЕМА ТЕРМИЧКЕ ДИЛАТАЦИЈЕ L КОМПЕНЗАТОРА ПРЕМА СТАНДАРДУ AD 2000 И ДРУГИМ МЕТОДАМА Милан Травица Иновациони центар Машински факултет Универ
АНАЛИЗА ПРОБЛЕМА ТЕРМИЧКЕ ДИЛАТАЦИЈЕ L КОМПЕНЗАТОРА ПРЕМА СТАНДАРДУ AD 2000 И ДРУГИМ МЕТОДАМА Милан Травица Иновациони центар Машински факултет Универзитет у Београду Краљице Марије 16, 11000 Београд mtravica@mas.bg.ac.rs
ВишеMicrosoft Word - V03-Prelijevanje.doc
Praktikum iz hidraulike Str. 3-1 III vježba Prelijevanje preko širokog praga i preljeva praktičnog profila Mali stakleni žlijeb je izrađen za potrebe mjerenja pojedinih hidrauličkih parametara tečenja
ВишеBetonske i zidane konstrukcije 2
7. PROVJERA OSIVOSTI ZIĐA U OSIA I A VERTIKALO OPTEREĆEJE I DJELOVAJE VJETRA PROGRA IZ KOLEGIJA BETOSKE I ZIDAE KOSTRUKCIJE 94 7. Provjra nosivosti ziđa u osima i na vrtialno optrćnj i djlovanj vjtra Slia
ВишеБеоград, МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА ЗАДАТАК 1 За носач приказан на слици: а) одредити дужине извијања свих штапова носача, ако на носач
Београд, 30.01.2016. а) одредити дужине извијања свих штапова носача, ако на носач делују само концентрисане силе, б) ако је P = 0.8P cr, и на носач делује расподељено оптерећење f, одредити моменат савијања
ВишеPojam konstrukcije, izbor konstruktivnog sistema, konstruktivni sistemi kroz istoriju. Linijski konstruktivni elementi grede,definicija, opšte
Pojam konstrukcije, izbor konstruktivnog sistema, konstruktivni sistemi kroz istoriju. Linijski konstruktivni elementi grede,definicija, opšte o grednim elementima, karakteristike, statički sistemi, oslonci,
ВишеMB &ton Regionalni stručni časopis o tehnologiji betona Godina: MB&ton 1
MB &ton Regionalni stručni časopis o tehnologiji betona Godina: 2019 2019 MB&ton 1 MB &ton Norma HRN EN 1992 [1] uvodi nove razrede čvrstoća betona, osim uobičajenih betona razreda C12/15 do razreda C50/60
Више?? - Tipska medjuroznjaca.xmcd
Tipska međurožnjača Poprečni presek HOP pravougaonog preseka: RHS 00/100/4 Dimenzije h 00mm b f 100mm t w 4mm t f 4mm r t w 8.0 mm Geometrijske karakteristike A.9cm G 18cm I y 100cm 4 W ely 10cm 3 W ply
Вишеma??? - Primer 4 Bocno torziono izvijanje spregnutog nosaca
Primer 4 - Bočno-torziono izvijanje spregnutog nosača 1. Karakteriske spregnutog nosača Spregnu nosač je stačkog sistema konnualnog nosača na dva polja. Raspon jednog polja je 0 m. Betonska ploča je konnualna
ВишеSveučilište u Zagrebu, Fakultet strojarstva i brodogradnje Katedra za strojeve i uređaje plovnih objekata PRIMJER PRORAČUNA PORIVNOG SUSTAVA RIBARSKOG
PRIMJER PRORAČUNA PORIVNOG SUSTAVA RIBARSKOG BRODA prof. dr. sc. Ante Šestan Ivica Ančić, mag. ing. Predložak za vježbe iz izbornog kolegija Porivni sustavi malih brodova Primjer proračuna porivnog sustava
Вишеbroj 043.indd - show_docs.jsf
ПРИЛОГ 1. Ширина заштитног појаса зграда, индивидуалних стамбених објеката и индивидуалних стамбено-пословних објеката зависно од притиска и пречника гасовода Пречник гасовода од 16 barа до 50 barа M >
ВишеSlide 1
Proračun staklenih panela i aluminijskih stupova 1 Staklo Sekundarna konstrukcija gustoća modul elastičnosti ρ = 2 500 kg/m³ E = 70 000 MPa Glavna konstrukcija Poisson koeficijent μ = 0,22 homogen, izotropan
Више6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA
SIGURNOST U PRIMJENI ELEKTRIČNE ENERGIJE 6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA Izv.prof. dr.sc. Vitomir Komen, dipl.ing.el. 1/14 SADRŽAJ: 6.1 Sigurnosni razmaci i sigurnosne
ВишеNAZIV PREDMETA TEHNIČKA MEHANIKA I Kod SKS003 Godina studija 1. Nositelj/i predmeta Dr.sc. Ado Matoković, prof.v.š. Bodovna vrijednost (ECTS) 7 Suradn
NAZIV PREDMETA TEHNIČKA MEHANIKA I Kod SKS003 Godina studija. Nositelj/i predmeta Dr.sc. Ado Matoković, prof.v.š. Bodovna vrijednost (ECTS) 7 Suradnici Vladimir Vetma, predavač Način izvođenja nastave
ВишеMicrosoft PowerPoint - KoMoMa -predavanje Definisanje alata masina
КОНСТРУИСАЊЕ МОБИЛНИХ МАШИНА Треће предавање дефинисање алата машина, кашике мини багера Кнематички ланци: E z = { L 1,L a) прости, б) разгранати, в) сложени,...,l n } а) L 1 б) L L n L 3 O 1 L o O n L
Више5 - gredni sistemi
Гредни системи бетонских мостова 1 БЕТОНСКИ МОСТОВИ ГРЕДНИ СИСТЕМИ Типови гредних система бетонских мостова Решетка Проста греда Греда с препустима Герберова греда Континуална греда Укљештена греда 2 Трајекторије
Вишеpedišić_valčić_rektorova
SVEUČILIŠTE U ZAGREBU GRAĐEVINSKI FAKULTET Mislav Pedišić i Anđelo Valčić OPTIMIZACIJA SASTAVLJENIH HLADNO OBLIKOVANIH KONSTRUKCIJSKIH ELEMENATA IZLOŽENIH SAVIJANJU Zagreb, 019. Ovaj rad izrađen je na
ВишеSVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Ante Jozić Zagreb, 2019.
SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Zagreb, 2019. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Mentori: Doc. dr. sc. Ivica Skozrit, dipl.
Вишеmfb_april_2018_res.dvi
Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Напомене: Испит траjе 80 минута. Коришћење литературе ниjе дозвољено!
ВишеNASLOV RADA (12 pt, bold, Times New Roman)
9 th International Scientific Conference on Production Engineering DEVELOPMENT AND MODERNIZATION OF PRODUCTION PRIMJENA METODE KONAČNIH ELEMENATA U ANALIZI OPTEREĆENJA PLASTIČNE PREKLOPIVE AMBALAŽE Damir
ВишеPitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske
Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske smjerove Opće napomene: (i) Sva direktna (neovisna) mjerenja vrijednosti nepoznatih
ВишеMicrosoft PowerPoint - STABILNOST KONSTRUKCIJA 4_19 [Compatibility Mode]
Univerzitet u Beogradu Građevinski fakutet Katedra za tehničku mehaniku i teoriju konstrukcija STABILNOST KONSTRUKCIJA IV ČAS V. PROF. DR MARIJA NEFOVSKA DANILOVIĆ 3. SABILNOST KONSTRUKCIJA 1 Geometrijska
Вишеd.o.o. Horvaćanska cesta 17a Zagreb Hrvatska Tel: Fax: RECIKLAŽNO DVORIŠTE OPĆINA BRINJE k.o. Brinje, k.č. 10
d.o.o. Horvaćanska cesta 17a 10 000 Zagreb Hrvatska Tel: +385 1 36 40 529 Fax: +385 1 36 80 800 RECIKLAŽNO DVORIŠTE OPĆINA BRINJE k.o. Brinje, k.č. 1076/3 GLAVNI GRAĐEVINSKI PROJEKT Konstrukcije Zagreb,
ВишеŠTO ZNAČI ZAHTIJEV ZA KROV ODNOSNO KROVNI POKROV, BROOF (t1), I KAKO SE TO SVOJSTVO ISPITUJE I DOKAZUJE Tomislav Skušić, dipl.ing. Laboratorij za topl
ŠTO ZNAČI ZAHTIJEV ZA KROV ODNOSNO KROVNI POKROV, BROOF (t1), I KAKO SE TO SVOJSTVO ISPITUJE I DOKAZUJE Tomislav Skušić, dipl.ing. Laboratorij za toplinska mjerenja d.o.o. Laboratorij djeluje u području
ВишеProračun i konstruisanje veza pod uglom
Momentne veze Metalne konstrukcije 2 P5-1 Karekteristike momentnih veza Sposobne su da prenesu i momente savijanja; U ovu kategoriju spadaju: krute i polu-krute, odnosno potpuno ili delimično nosive veze;
ВишеMicrosoft PowerPoint - ME_P1-Uvodno predavanje [Compatibility Mode]
MAŠINSKI ELEMENTI dr Miloš Ristić UVOD Mašinski elementi predstavljaju tehničkonaučnu disciplinu. Izučavanjem ove discipline stiču seteorijska i praktična znanja za proračun, izbor i primenu mašinskih
ВишеSlide 1
Грађевински факултет Универзитета у Београду МОСТОВИ Субструктура моста Вежбе 4 Програм предмета Датум бч. Предавања бч. Вежбе 1 22.02. 4 Уводно предавање - 2 01.03. 3 Дефиниције, системи, распони и материјали
Више_cas 8 temelji i gredni sistemi
Одсек ПЖA Мостови Предавање 8 29. Март 2019. Типови темеља Плитко фундирање Дубоко фундирање Шипови Бунари Кесони Извођење на сувом и извођење у воденој препреци др Снежана Машовић Школска 2018/19 2 Плитко
ВишеMicrosoft Word - Elektrijada_V2_2014_final.doc
I област. У колу сталне струје са слике када је и = V, амперметар показује I =. Одредити показивање амперметра I када је = 3V и = 4,5V. Решење: а) I = ) I =,5 c) I =,5 d) I = 7,5 3 3 Слика. I област. Дата
ВишеSveučilište u Rijeci
Sveučilište u Rijeci Građevinski fakultet Naziv studija: PREDDIPLOMSKI STRUČNI STUDIJ Semestar 3. ak. god.: 2018./19. IZVEDBENI NASTAVNI PLAN ZA PREDMET: Osnove betonskih i zidanih konstrukcija Broj ECTS:
ВишеДинамика крутог тела
Динамика крутог тела. Задаци за вежбу 1. Штап масе m и дужине L се крајем А наслања на храпаву хоризонталну раван, док на другом крају дејствује сила F константног интензитета и правца нормалног на штап.
ВишеSlide 1
Технологије производње кућа од дрвета Важност градње данас Класификација конструктивног дрвета Производи од дрвета за градњу зграде и куће данас троше скоро 50% од укупно произведене енергије троше 75%
Више4.1 The Concepts of Force and Mass
Interferencija i valna priroda svjetlosti FIZIKA PSS-GRAD 23. siječnja 2019. 27.1 Načelo linearne superpozicije Kad dva svjetlosna vala, ili više njih, prolaze kroz istu točku, njihova se električna polja
ВишеFAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot
FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robotika Zagreb, 2014. MODEL PROCESA U PROSTORU STANJA
ВишеSVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Damir Završki Zagreb, 2017.
SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Zagreb, 017. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Mentori: Prof. dr. sc. Milan Kostelac, dipl.
ВишеALIQUANTUM DOO, NOVI SAD - VIKENDICE I KUĆE ZA ODMOR MODEL A-05 IDEJNО REŠENJE (IDR) 50 PROJEKAT ZA GRAĐEVINSKU DOZVOLU (PGD) 500 *PGD obuhv
VIKENDICE I KUĆE ZA ODMOR IDEJNО REŠENJE (IDR) 50 PROJEKAT ZA GRAĐEVINSKU DOZVOLU (PGD) 500 *PGD obuhvata isključivo: 0-Glavna sveska, 1-Arhitektura i Elaborat EE. Strana 2od 7 TEHNIČKI OPIS LOKACIJA I
ВишеSveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o
Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske optike (lom i refleksija svjetlosti). Određivanje žarišne daljine tanke leće Besselovom metodom. Teorijski dio Zrcala i leće su objekti
ВишеZBIRKA TBK FIN_bez oznaka za secenje.pdf
ZBIRKA ZADATAKA TEORIJA BETONSKIH KONSTRUKCIJA 1 Ivan Ignjatović Beograd, 2018. god Impresum Autori: Naslov: Izdavač: Za izdavača: Recenzenti: Dizajn: Tiraž: Štampa: Mesto: Godina izdanja: ISBN: Dr Ivan
ВишеMicrosoft PowerPoint - STABILNOST KONSTRUKCIJA 2_18 [Compatibility Mode]
6. STABILNOST KONSTRUKCIJA II čas Marija Nefovska-Danilović 3. Stabilnost konstrukcija 1 6.2 Osnovne jednačine štapa 6.2.1 Linearna teorija štapa Važe pretpostavke o geometrijskoj (1), statičkoj (2) i
ВишеKRATKE UPUTE ZA MONTAŽU KROVNIH PLOCA
www.gerardkrovovi.hr KRATKE UPUTE ZA MONTAŽU KROVNIH PLOCA KROVNE PLOČE GERARD DIAMANT Pokrivna dužina: 1270 mm Pokrivna širina: 398 mm Br. krovnih ploča/m 2 : 1,98 Masa/m 2 : 6,28 kg Najmanji nagib: 14
ВишеOБЛАСТ: БЕЗБЕДНОСТ САОБРАЋАЈА ВЕШТАЧЕЊЕ САОБРАЋАЈНИХ НЕЗГОДА 1. Израчунати зауставни пут (Sz) и време заустављања ако су познати следећи подаци: брзин
OБЛАСТ: БЕЗБЕДНОСТ САОБРАЋАЈА ВЕШТАЧЕЊЕ САОБРАЋАЈНИХ НЕЗГОДА 1. Израчунати зауставни пут (Sz) и време заустављања ако су познати следећи подаци: брзина аутомобила пре предузетог кочења Vo = 68 km/, успорење
ВишеMergedFile
Investitor: Lokacija: Grad Čazma, Trg Čazmanskog kaptola 13 ; OIB: 81963437417 Vatrogasni dom Dapci zgrada javne namjene Dapci, k.č.br. 1271 k.o. Dapcii Zagrebačka 30 10313 Graberje Ivaničko Tel: ++385
ВишеTitle
Број: 1-02-4042-23/17-9 Датум: 10.11.2017. Београд ИЗМЕНЕ И ДОПУНЕ КОНКУРСНЕ ДОКУМЕНТАЦИЈЕ За јавну набавка радова - изградња мреже станица за мониторисање РФ спектра и сензора за мерење нејонизујућег
ВишеMicrosoft Word - Rijeseni primjeri 15 vjezbe iz Mehanike fluida I.doc
. Odredite ubitke tlaka pri strujanju zraka (ρ=,5 k/m 3 =konst., ν =,467-5 m /s) protokom =5 m 3 /s kroz cjevovod duljine L=6 m pravokutno presjeka axb=6x3 mm. Cijev je od alvanizirano željeza. Rješenje:
ВишеSveučilište u Zagrebu Građevinski fakultet Tajništvo FAKULTETSKO VIJEĆE KLASA: /19-06/02 URBROJ: Zagreb, 27. ožujka Na tem
Sveučilište u Zagrebu Građevinski fakultet Tajništvo FAKULTETSKO VIJEĆE KLASA: 003-08/19-06/02 URBROJ: 251-64-03-19-14 Zagreb, 27. ožujka 2019. Na temelju članka 79. Zakona o znanstvenoj djelatnosti i
Више1. Tijela i tvari Sva tijela zauzimaju prostor. Tijela su načinjena od tvari. Tvari se mogu nalaziti u trima agregacijskim stanjima: čvrstom, tekućem
1. Tijela i tvari Sva tijela zauzimaju prostor. Tijela su načinjena od tvari. Tvari se mogu nalaziti u trima agregacijskim stanjima: čvrstom, tekućem i plinovitom. Mjerenje je postupak kojim fizičkim veličinama
ВишеMicrosoft PowerPoint - O proracunu zidanih konstrukcija_2.ppt
ZIDANE ZGRADE PROJEKTIRANJE I PRORAČUN BORIS TROGRLIĆ Doc. dr. sc. / dipl.ing.građ. / boris.trogrlic@gradst.hr SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE www.gradst.hr Split,
Вишеosnovni gredni elementi - primjer 2.nb
MKE: Zadatak 1 - Primjer 1 Za nosač na slici potrebno je odrediti raspodjelu momenata savijanja pomoću osnovnih grednih elemenata. Gredu diskretizirati sa elementa. Rezultate usporediti sa analitičkim
ВишеPRILOG 3 TEHNIČKI OPIS I NACRTI
PRILOG 3 TEHNIČKI OPIS I NCRTI Naziv projektantskog ureda: MOILIT EVOLV d.o.o. Froudeova 5, 000 ZGRE OI 49776278191 Naziv investitora: HRVTSKE UTOCESTE d.o.o. Širolina 4, 000 ZGRE OI 570462912 PROSTOR
ВишеШумска транспортна средства - испитна питања
I ШУМСКИ ПУТЕВИ (38 питања) 1. Како се врши рекогносцирање терена, утврђивање чворних тачака и просечног нагиба између чворних тачака? 2. Какав значај имају шумска транспортна средстава и који је степен
ВишеGODINA JAMSTVO since 1920 Cjenik Vrijedi od 01. veljače Proizvođač zadržava pravo tehničkih izmjena! Boje u katalogu se zbog tiskarsko-tehničkih
GODINA JAMSTVO since 1920 Cjenik Vrijedi od 01. veljače 2016. Proizvođač zadržava pravo tehničkih izmjena! Boje u katalogu se zbog tiskarsko-tehničkih razloga mogu u nijansama razlikovati od stvarnih boja
ВишеKlimaoprema katalog PPZEN
3/S3 v 2.4 (hr) ISTRUJNA ROZETA STUBIŠNI DISTRIBUTER VRTLOŽNI DISTRIBUTER STUBIŠNI KRILASTI IR, SDV, DSK www.klimaoprema.hr 9 SADRŽAJ Istrujna rozeta, tip IR... 211 Stubišni distributer vrtložni, tip SDV...
ВишеMicrosoft Word - predavanje8
DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).
ВишеMicrosoft PowerPoint - Opruge kao funkcionalni elementi vezbe2.ppt
Deformacija opruge: 8FD Gd n f m 4 8Fwn Gd 1 Broj zavojaka opruge Kod pritisnih opruga sa velikim brojem promena opterećenja preporučuje se da se broj zavojaka završava na 0.5, npr..5, 4.5, 5.5... Ukupan
ВишеMicrosoft PowerPoint - Predavanje 9 - Rehabilitacija i Rekonstrukcija.pptx
Rehabilitacija i rekonstrukcija puteva Održavanje puteva 08/9 Definicije Rehabilitacija sve građevinske aktivnosti održavanja se odvijaju u okviru raspoloživog putnog zemljišta, bez nove ili naknadne eksproprijacije
ВишеЗадатак 4: Центрифугална пумпа познате карактеристике при n = 2900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у р
Задатак 4: Центрифугална пумпа познате карактеристике при n = 900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у резервоар B. Непосредно на излазу из пумпе постављен
ВишеPowerPoint Presentation
SK - P01 1 SPREGNUTE KONSTRUKCIJE OD ČELIKA I BETONA Doc. dr Milan Spremić Nina Gluhović SK - P01 2 Organizacija predmeta Fond časova: 2+1 (u letnjem semestru) Šifra predmeta: B2K4CB ESPB: 4 Predavanja:
ВишеMicrosoft PowerPoint - Prskalo - prezentacija 2015.ppt [Način kompatibilnosti]
PROZORI I VRATA PODLOGA ZA CE OZNAČAVANJE I IZJAVU O SVOJSTVIMA Goran Jakovac, dipl. ing. Euroinspekt drvokontrola d.o.o. 1 Što su to prozori i vrata? Sklopovi koji zatvaraju otvore u zidovima Omogućavaju
ВишеU N I V E R Z I T E T U Z E N I C I U N I V E R S I TA S S T U D I O R U M I C A E N S I S Z E N Univerzitet u Zenici Mašinski fakultet Aleksandar Kar
U N I V E R Z I T E T U Z E N I C I U N I V E R S I T S S T U D I O R U M I C E N S I S Z E N Univerzitet u Zenici Mašinski fakultet leksandar Karač Riješeni ispitni zadaci iz Otpornosti materijala Zenica,
ВишеMicrosoft PowerPoint - OMT2-razdvajanje-2018
OSNOVE MAŠINSKIH TEHNOLOGIJA 2 TEHNOLOGIJA PLASTIČNOG DEFORMISANJA RAZDVAJANJE (RAZDVOJNO DEFORMISANJE) Razdvajanje (razdvojno deformisanje) je tehnologija kod koje se pomoću mašine i alata u zoni deformisanja
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
ВишеОsnovni principi u projektovanju mostova
КОЛОВОЗНА КОНСТРУКЦИЈА БЕТОНСКИХ МОСТОВА 1 Типови попречног пресека коловоне конструкције Избор типа поречног пресека зависи од : Распона коловозне конструкцие Расположиве висине Начина извођења Постоје:
ВишеMicrosoft Word - Rjesenja zadataka
1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji
ВишеPowerPoint prezentacija
pred. Marin Binički / Arhitektonski fakultet 21/02/2019 Zgrade 2020+ Energetska učinkovitost i održivost zgrada nakon 2020. 1 ekvivalentne emisije ( eq) Staklenički plin Formula Potencijal globalnog zagrijavanja
ВишеSTATIKA GRAĐEVNIH KONSTRUKCIJA 273 smatra zamišljeni pomak konstrukcije kojim se ona od polaznoga dovodi u neki identični položaj, što se naziva prekl
STATIKA GRAĐEVNIH KONSTRUKCIJA 273 smatra zamišljeni pomak konstrukcije kojim se ona od polaznoga dovodi u neki identični položaj, što se naziva preklapanjem. Preklapanje se ne odnosi samo na geom etrijske,
ВишеPOSLOVNA ZGRADA RIJEKA Korzo 13 k.č. 696, zk.ul. 973, k.o. Rijeka Zagreb, ožujak, 2015.
POSLOVNA ZGRADA RIJEKA Korzo 13 k.č. 696, zk.ul. 973, k.o. Rijeka Zagreb, ožujak, 2015. 1. OPĆI PODACI O NEKRETNINI Zgrada se nalazi na atraktivnoj lokaciji u centru grada uz glavnu šetnicu Korzo. Izgrađena
ВишеKATALOG TEMA ZA ZAVRŠNE RADOVE Strojarstvo
školska godina 06./7. Strojarski računalni tehničar ukupno 40 tema Predlagatelji tema:. prof. Marijan Horvat. prof. Jasminka Jelačić 3. prof. Marijan Murković 4. prof. Darko Prebeg 5. prof. Branko Stanić
Више12_Predavanja_OPE
OSNOVE POSLOVNE EKONOMIJE 12. Kalkulacija Sadržaj izlaganja: 12. KALKULACIJA 12.1. Pojam kalkulacije 12.2. Elementi kalkulacije 12.3. Vrste kalkulacije 12.4. Metode kalkulacije 12.4.1. Kalkulacija cijene
Више