I Koeficijent refleksije Površinski plazmoni II Valovodi Rezonantne šupljine Mikrovalna mjerenja #13 Raspršenje elektromagnetskih valova na kristalima

Величина: px
Почињати приказ од странице:

Download "I Koeficijent refleksije Površinski plazmoni II Valovodi Rezonantne šupljine Mikrovalna mjerenja #13 Raspršenje elektromagnetskih valova na kristalima"

Транскрипт

1 #13 Raspršenje elektromagnetskih valova na kristalima I Dipolno zračenje II Raspršenje vidljive svjetlosti i X zraka predavanja 20**

2 Mjerenje koeficijenta refleksije Površinski plazmoni Valovodi Rezonantne šupljine Mikrovalna mjerenja

3 Motivacija I karakteristični eksperimentalni rezultati u grafenu - neelastično raspršenje X zraka [Maultzsch et al., 2007] - ramansko raspršenje (vidljive svjetlosti) [Ferrari, 2007]

4 Motivacija I karakteristični eksperimentalni rezultati u visokotemperaturnim supravodičima - elektronsko, fononsko i dvomagnonsko ramansko raspršenje u B 1g kanalu [Devereaux, Hackl, 2007] - rezonantno dvomagnonsko raspršenje [Blumberg et al., 1997]

5 što i kako mjerimo? Geometrija problema - mjerimo udarni presjek u zoni radijacije σ = ( ) dσ dω dω, - teorijski opis pomoću dielektričnog pomaka dσ dω = C r 2 E 2 E 2 D α (x,ω ) = ε (ω )E α (x,ω ) + β δε αβ (??)E β (x,ω) k α x kβ ε(ω) θ x

6 Redefinicija pojma točke raspršenje em valova u mikroskopskoj fizici čvrstog stanja - definicija kvantnomehaničke gustoće naboja ρ m (x,t) nl z leδ(x x nl (t)) + n(x,t), n(x,t) = nl n l(x x nl (t)) - mikroskopska točka x (vrijedi i u makroskopskoj granici!) - gustoća naboja elektrona u ravnoteži n 0 (x) = m eikm x n 0 (K m ) x x x x x n(x) x x x x x x

7 Fluktuacije naboja k 0 monopolne, dipolne i kvadrupolne fluktuacije naboja - fluktuacije gustoće vodljivih i vezanih elektrona u teoriji raspršenja δn(x,t) = n(x,t) n 0 (x) u nl (t) xnl n n l (x; {x nl }) nl n l - u ramanskom raspršenju: k 0 kvadrupolne fluktuacije naboja δn αβ (x,t) [dipolno izborno pravilo] - u difrakciji X zraka: ravnotežna gustoća elektrona n 0 (x) q, M -2q, M 1 2 x u q, M 1 x x x x x x u u u u

8 Dielektrični pomak - polja u klasičnoj teoriji raspršenja E E(x,ω), E E(x,ω ), D D(x,ω ) - dielektrični pomak [D = ε E + δˆεe] D = α D αêα, D α = ε E α + β δε αβe β - klasična teorija raspršenja [ε(x,ω) = 1 (4πe 2 /mω 2 )n(x,ω)] δε αβ (x,ω,ω ) = 4πe2 mωω δn αβ(x,ω,ω ) k α x kβ ε(ω) θ x

9 Dipolno zračenje u klasičnoj elektrodinamici kako izgledaju električna i magnetska komponenta polja u zoni radijacije? - Maxwellove jednadžbe [µ = µ = 1 i ω /c = k ] D (x,t) = 0, H (x,t) = 0, E (x,t) = ik H (x,t) H (x,t) = ik D (x,t) - pojednostavljena forma jednadžbi E 0, E = ik H H = 0, H = ik ε E + (4π/c)J - uz efektivni strujni izvor J(x,t) = i(ω /4π)δˆε(x,t)E(x,t) i(e 2 /mω)δˆn(x,t)e(x,t)

10 Dipolno zračenje u klasičnoj elektrodinamici rješenje - ukupni dipolni moment P(t) = i ω - rješenje u zoni radijacije V d 3 x e ik x J(x,t) = V d 3 x e ik x e2 δˆn(x,t) mωω E(x,t) A = ik P(e ik r /cr ), H = A, E = k 2( n P ) n(e ik r /r ) - fluktuacije naboja δn( q) = d 3 x e iq x δˆn(x)ê β, ( n δn ) n = δn - električna komponenta polja E = E 0 e iω t k k e 2 mc 2δn ( q) eik r r ê α

11 Motivacija II difrakcija X zraka (elastično raspršenje X zraka) - u supravodiču MgB 2 [Skoko et al., 2010] - u sustavu s valovima gustoće naboja BaVS 3 [Inami et al., 2002] relativni intenzitet (001) α (100) α (111) β (101) α (200) β (002) α (110) α (220) β (102) α (111) α Braggov kut θ

12 Udarni presjek...za raspršenje em valova na kristalima - Fourierov transformat korelacijske funkcije izmed u gustoća naboja n(q,t 1 )n (q,t 2 ) = d 3 x 1 d 3 x 2 e iq (x 1 x 2 ) n(x 1,t 1 )n (x 2,t 2 ) V V - statička korelacijska funkcija [ nn q = d 3 x e iq x n(x)n (0) ] - udarni presjek n(q)n (q) = n(q) 2 = V nn q ( ) dσ dω = k e 2 2 ( ) e k mc 2 n (q) mc 2 2 (1 + cos2 θ ) n(q) 2

13 Udarni presjek razlučiv po energijama - korelacijska funkcija za različita vremena dσ αβ (t 1,t 2 ) dω = r 2 k E β (t 1 ) E β (t 2) k E α (t 1 ) Eα(t 2 ) - udarni presjek dσ αβ dω = dω 0 2π dσ αβ dω dω 0 dσ αβ dω = dt 1 e iω 0t 1 dσ αβ (t 1,0) dω 0 dω -...razlučiv po energijama (za kvadrupolne fluktuacije) ( ) dσ αβ dω = k e 2 2 dω 0 k mc 2 V δn αβδnαβ q ω 0

14 Fononsko ramansko raspršenje izborna pravila u ramanskom raspršenju - struktura ukupne inducirane polarizacije [α(u) = α 0 + α u +...] P α (ω )e iω t = χ αα (ω )E α (ω )e iω t + χ αα(ω) ue iω0t E α (ω)e iωt u - adijabatski izraz za konstantu vezanja δε αα (x,t) = 4π( χ αα (ω)/ u)ue iq x+iω 0t k α x Θ k β Θ Θ J(x) δ ε(ω) z x

15 Difrakcija X zraka amplituda raspršenja iz FČS - udarni presjek ( ) dσ e dω = mc 2 2 (1 + cos2 θ ) n(q) 2 - amplituda raspršenja A sc (k,k ) = a(k,k ) V d3 x e iq x n(x) A sc (q) = nl e iq x nl f l (q), f l (q) = a(q) d 3 y e iq y n l (y) V - Braggova formula: k = k + K m ili K m = 2k sin(θ m /2) A sc (q) = n e iq Rn S(q) = Nδ q,km S(K m ), S(q) = l f l (q)e iq r0 l

I Jednadžbe magnetostatike Odzivne funkcije Rješavanje jednadžbi II Energija polja TDM relacije #5 Makroskopska magnetostatika I Makroskopske jednadžb

I Jednadžbe magnetostatike Odzivne funkcije Rješavanje jednadžbi II Energija polja TDM relacije #5 Makroskopska magnetostatika I Makroskopske jednadžb #5 Makroskopska magnetostatika I Makroskopske jednadžbe magnetostatike II Termodinamički potencijali predavanja 20** Jednadžbe magnetostatike Magnetske odzivne funkcije Rješavanje jednadžbi magnetostatike

Више

Račun smetnje i Greenove funkcije «Napredna kvantna fizika» Ivo Batistić Fizički odsjek, PMF Sveučilište u Zagrebu predavanja 2010 Pregled predavanja

Račun smetnje i Greenove funkcije «Napredna kvantna fizika» Ivo Batistić Fizički odsjek, PMF Sveučilište u Zagrebu predavanja 2010 Pregled predavanja Račun smetnje i Greenove funkcije «Napredna kvantna fizika» Ivo Batistić Fizički odsjek, PMF Sveučilište u Zagrebu predavanja 2010 Pregled predavanja Račun smetnje Greenove funkcije Wickov teorem Različite

Више

dif_pol_2.key

dif_pol_2.key Integrirani intenzitet Položaj Intenzitet =??? Braggov zakon: d sinθ = nλ Raspršenje na elektronu Kada rendgenska zraka padne na atom može se desiti: 1. apsorpcija zrake uz emisiju elektrona. raspršenje

Више

XIII. Hrvatski simpozij o nastavi fizike Ogib na pukotini: teorija i pokusi Velimir Labinac 1, Luka Zurak 1, Marin Karuza 1,2,3,4 1 Odjel za fiziku, S

XIII. Hrvatski simpozij o nastavi fizike Ogib na pukotini: teorija i pokusi Velimir Labinac 1, Luka Zurak 1, Marin Karuza 1,2,3,4 1 Odjel za fiziku, S Ogib na pukotini: teorija i pokusi Velimir Labinac 1, Luka Zurak 1, Marin Karuza 1,,3,4 1 Odjel za fiziku, Sveučilište u Rijeci Centar za mikro i nano znanosti i tehnologije, Sveučilište u Rijeci 3 Fotonika

Више

Elektronika 1-RB.indb

Elektronika 1-RB.indb IME I PREZIME UČENIKA RAZRED NADNEVAK OCJENA Priprema za vježbu Snimanje strujno-naponske karakteristike diode. Definirajte poluvodiče i navedite najčešće korištene elementarne poluvodiče. 2. Slobodni

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r Sveučilište J.J. Strossmayera Fizika 2 Predložak za laboratorijske vježbe Cilj vježbe Određivanje relativne permitivnosti stakla, plastike, papira i zraka mjerenjem kapaciteta pločastog kondenzatora U-I

Више

Toplinska i električna vodljivost metala

Toplinska i električna vodljivost metala Električna vodljivost metala Cilj vježbe Određivanje koeficijenta električne vodljivosti bakra i aluminija U-I metodom. Teorijski dio Eksperimentalno je utvrđeno da otpor ne-ohmskog vodiča raste s porastom

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifični naboja elektrona (omjer e/me) iz poznatog polumjera putanje elektronske zrake u elektronskoj cijevi, i poznatog napona i jakosti

Више

8. predavanje Vladimir Dananić 17. travnja Vladimir Dananić () 8. predavanje 17. travnja / 14

8. predavanje Vladimir Dananić 17. travnja Vladimir Dananić () 8. predavanje 17. travnja / 14 8. predavanje Vladimir Dananić 17. travnja 2012. Vladimir Dananić () 8. predavanje 17. travnja 2012. 1 / 14 Sadržaj 1 Izmjenični napon i izmjenična struja Inducirani napon 2 3 Izmjenični napon Vladimir

Више

NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE

NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE studij Matematika i fizika; smjer nastavnički NFP 1 1 ZADACI 1. Odredite period titranja i karakterističnu

Више

PowerPoint Presentation

PowerPoint Presentation РЕДЕФИНИЦИЈА АМПЕРА Агенда међународне активности 2017-2019 o 20. 10. 2017. - 106. састанак CIPM - усвојена резолуција која препоручује редефиниције основних мерних јединица SI (килограма, ампера, келвина

Више

Impress

Impress Mogu li se sudari super-ljuski vidjeti pomoću teleskopa LOFAR? Marta Čolaković-Bencerić1, Vibor Jelić2 Fizički odsjek, PMF, Sveučilište u Zagrebu, Bijenička cesta 32, 10000 Zagreb, Hrvatska 1 Institut

Више

SSIF-Diklić-prezentacija

SSIF-Diklić-prezentacija Potraga za egzotičnim strukturama u jezgrama sumpora Josipa Diklić Mentor: dr. sc. Tea Mijatović Kolegij: Samostalni seminar iz istraživanja u fizici Uvod Tehnološkim napretkom postalo moguće sudarati

Више

Microsoft PowerPoint - IR-Raman1 [Compatibility Mode]

Microsoft PowerPoint - IR-Raman1 [Compatibility Mode] Spektar elektromagnetnoga t zračenja 10 5 10 3 10 1 10-1 10-3 10-5 10-7 E(kJ/mol) 10-6 10-4 10-2 1 10 2 10 4 10-8,cm X UV zrake zrake prijelazi elektrona IR mikrovalovi radiovalovi vibracije rotacije prijelazi

Више

Fizika Detaljni izvedbeni plan Prediplomski studij: Biotehnologija i istraživanje lijekova, I godina ECTS bodovi: 6 Nastavno opterećenje/sati: 40 sati

Fizika Detaljni izvedbeni plan Prediplomski studij: Biotehnologija i istraživanje lijekova, I godina ECTS bodovi: 6 Nastavno opterećenje/sati: 40 sati Fizika Detaljni izvedbeni plan Prediplomski studij: Biotehnologija i istraživanje lijekova, I godina ECTS bodovi: 6 Nastavno opterećenje/sati: 40 sati (30P+10V) Praktikum: 20 sati (S) Voditelj predmeta:

Више

Microsoft Word - GI_novo - materijali za ispit

Microsoft Word - GI_novo - materijali za ispit GEOTEHNIČKO INŽENJERSTVO DIJAGRAMI, TABLICE I FORMULE ZA ISPIT ak.god. 2011/2012 2 1 υi s yi = pb I syi Ei Slika 1. Proračun slijeganja vrha temelja po metodi prema Mayne & Poulos. Slika 2. Proračun nosivosti

Више

Transportna svojstva 2. dio - << Fizika čvrstog stanja >>

Transportna svojstva 2. dio - << Fizika čvrstog stanja >> Transportna svojstva 2 dio «Fizika čvrstog stanja» Ivo Batistić Fizički odsjek, PMF Sveučilište u Zagrebu predavanja 2014/2015 (zadnja inačica 21 srpnja 2016) Pregled predavanja Toplinska vodljivost elektrona

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

Prijedlozi tema za diplomske radove u Mentor : Prof. dr. sc. Amon Ilakovac Naslov teme: Renormalizacija i renormalizacijska grupa standardnog mo

Prijedlozi tema za diplomske radove u Mentor : Prof. dr. sc. Amon Ilakovac Naslov teme: Renormalizacija i renormalizacijska grupa standardnog mo Prijedlozi tema za diplomske radove u 2011. Mentor : Prof. dr. sc. Amon Ilakovac Naslov teme: Renormalizacija i renormalizacijska grupa standardnog modela Sadržaj teme: Tema bi obuhvaćala dijelove slijedećih

Више

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 2_18 [Compatibility Mode]

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 2_18 [Compatibility Mode] 6. STABILNOST KONSTRUKCIJA II čas Marija Nefovska-Danilović 3. Stabilnost konstrukcija 1 6.2 Osnovne jednačine štapa 6.2.1 Linearna teorija štapa Važe pretpostavke o geometrijskoj (1), statičkoj (2) i

Више

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху Одређивање коефицијента пригушења у ваздуху помоћу линеарног хармонијског осцилатора Соња Ковачевић 1, Милан С. Ковачевић 2 1 Прва крагујевачка гимназија, Крагујевац, Србија 2 Природно-математички факултет,

Више

Uvod u fiziku cvrstog stanja - << Fizika cvrstog stanja >>

Uvod u fiziku cvrstog stanja - << Fizika cvrstog stanja >> Uvod u fiziku čvrstog stanja «Fizika čvrstog stanja» Ivo Batistić Fizički odsjek, PMF Sveučilište u Zagrebu predavanja 2013/2014 (zadnja inačica 21. srpnja 2016.) Pregled predavanja Što je fizika kondenzirane

Више

Microsoft PowerPoint - Pogonski sistemi-predavanje 5

Microsoft PowerPoint - Pogonski sistemi-predavanje 5 ПОГОНСКИ СИСТЕМИ Пето предавање прорачун хидродинамичке трансмисије Хидродинамичке трансмисије кретања мобилних машина 6. 5. 4. 4. 5. 6. 6. 5. 4. 4. 5. 6. а) б) 6. 5. 4. 4.4 5. 5. 4. 6. 4. 6. 4. 5. r d

Више

Prva skupina

Prva skupina Prva skupina 1. Ravnoteža napetosti, vrste deformacija, te Lameove jednadžbe i njihovo značenje. 2. Prijenosna funkcija i frekventni odziv generaliziranog mjernog sustava. 3. Građa unutrašnjosti Zemlje.

Више

Nastavno pismo 3

Nastavno pismo 3 Nastavno pismo Matematika Gimnazija i strukovna škola Jurja Dobrile Pazin Obrazovanje odraslih./. Robert Gortan, pro. Derivacije. Tablica sadržaja 7. DERIVACIJE... 7.. PRAVILA DERIVIRANJA... 7.. TABLICA

Више

untitled

untitled С А Д Р Ж А Ј Предговор...1 I II ОСНОВНИ ПОЈМОВИ И ДЕФИНИЦИЈЕ...3 1. Предмет и метод термодинамике... 3 2. Термодинамички систем... 4 3. Величине (параметри) стања... 6 3.1. Специфична запремина и густина...

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija

Више

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Нелинеарно еластично клатно Милан С. Коваче

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Нелинеарно еластично клатно Милан С. Коваче Нелинеарно еластично клатно Милан С. Ковачевић 1, Мирослав Јовановић 2 1 Природно-математички факултет, Крагујевац, Србија 2 Гимназија Јосиф Панчић Бајина Башта, Србија Апстракт. У овом раду је описан

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK Marija Došlić ISTRAŽIVANJE NABOJNIH I SUPRAVODLJIVIH KORELACIJA U KUPRATIMA PO

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK Marija Došlić ISTRAŽIVANJE NABOJNIH I SUPRAVODLJIVIH KORELACIJA U KUPRATIMA PO SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK Marija Došlić ISTRAŽIVANJE NABOJNIH I SUPRAVODLJIVIH KORELACIJA U KUPRATIMA POMOĆU NELINEARNE VODLJIVOSTI Diplomski rad Zagreb, 2014

Више

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij VEKTORSKA FUNKCIJ

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij VEKTORSKA FUNKCIJ SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij VEKTORSKA FUNKCIJA I PRIMJERI IZ FIZIKE Završni rad Tomislav Kneţević

Више

Microsoft PowerPoint - 3_Elektrohemijska_korozija_kinetika.ppt - Compatibility Mode

Microsoft PowerPoint - 3_Elektrohemijska_korozija_kinetika.ppt  -  Compatibility Mode KOROZIJA I ZAŠTITA METALA dr Aleksandar Lj. Bojić Elektrohemijska korozija Kinetika korozionog procesa 1 Korozioni sistem izvan stanja ravnoteže polarizacija Korozija metala: istovremeno odvijanje dve

Више

Energetski pretvarači 1 Februar zadatak (18 poena) Kondenzator C priključen je paralelno faznom regulatoru u cilju kompenzacije reaktivne sna

Energetski pretvarači 1 Februar zadatak (18 poena) Kondenzator C priključen je paralelno faznom regulatoru u cilju kompenzacije reaktivne sna 1. zadatak (18 poena) Kondenzator C priključen je paralelno faznom regulatoru u cilju kompenzacije reaktivne snage osnovnog harmonika. Induktivnost prigušnice jednaka je L = 10 mh, frekvencija mrežnog

Више

Polarizirano zračenje radio galaksija na niskim radio frekvencijama Dario Barišić Mentor: dr. sc. Vibor Jelić, IRB 20. siječnja Sažetak U ovom r

Polarizirano zračenje radio galaksija na niskim radio frekvencijama Dario Barišić Mentor: dr. sc. Vibor Jelić, IRB 20. siječnja Sažetak U ovom r Polarizirano zračenje radio galaksija na niskim radio frekvencijama Dario Barišić Mentor: dr. sc. Vibor Jelić, IRB 20. siječnja 2018. Sažetak U ovom radu bavimo se potragom za radio galaksijama koristeći

Више

ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура,

ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура, ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура, електрични отпор б) сила, запремина, дужина г) маса,

Више

ELEKTRONIKA, UREĐAJI. ANTENE 603 ili u donjem dijelu vrlo visokih frekvencija, tačnost frekvencije u odnosu prema nazivnoj mora biti još bolja. Tako v

ELEKTRONIKA, UREĐAJI. ANTENE 603 ili u donjem dijelu vrlo visokih frekvencija, tačnost frekvencije u odnosu prema nazivnoj mora biti još bolja. Tako v ELEKTRONIKA, UREĐAJI. ANTENE 603 ili u donjem dijelu vrlo visokih frekvencija, tačnost frekvencije u odnosu prema nazivnoj mora biti još bolja. Tako velika stabilnost frekvencije može se postići samo primjenom

Више

Gravitacija kao specijalna relativistička teorija polja Jelena Filipović Fizički odsjek, PMF, Sveučilište u Zagrebu

Gravitacija kao specijalna relativistička teorija polja Jelena Filipović Fizički odsjek, PMF, Sveučilište u Zagrebu Gravitacija kao specijalna relativistička teorija polja Jelena Filipović Fizički odsjek, PMF, Sveučilište u Zagrebu Uvod Svojstva gravitacije dugodosežna interakcija graviton je bezmasena čestica statička

Више

Microsoft Word - NASLOVNA.docx

Microsoft Word - NASLOVNA.docx Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje ZAVRŠNI RAD Ivančica Cvetko Zagreb, 29. Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje ZAVRŠNI RAD Voditelj rada : Dr. sc. Većeslav

Више

8. ( )

8.    ( ) 8. Кинематика тачке (криволиниjско кретање) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити 1. Криволиниjско кретање Преглед

Више

Microsoft Word - Elektrijada_V2_2014_final.doc

Microsoft Word - Elektrijada_V2_2014_final.doc I област. У колу сталне струје са слике када је и = V, амперметар показује I =. Одредити показивање амперметра I када је = 3V и = 4,5V. Решење: а) I = ) I =,5 c) I =,5 d) I = 7,5 3 3 Слика. I област. Дата

Више

Zbirka zadataka

Zbirka zadataka Dio I Kontinuirani signali i sustavi 7 . Bezmemorijski kontinuirani sustavi Bezmemorijske kontinuirane sustave možemo podijeliti na eksplicitne i implicitne sustave:. Implicitni sustavi su oni sustavi

Више

Microsoft Word - zadaci_19.doc

Microsoft Word - zadaci_19.doc Na temelju sljedećih podataka odgovorite na prva dva pitanja. C = 1000, I = 200, G = 400, X = 300, IM=350 Sve su navedene varijable mjerene u terminima domaćih dobara. 1. Razina potražnje za domaćim dobrima

Више

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom

Више

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRALI Sastavio: Ante Bilušić Split, rujan 4. 1 Neodredeni

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass Električna potencijalna energija i potencijal FIZIKA PSS-GRAD 20. prosinca 2017. 19.1 Potencijalna energija W AB = m g h B m g h A = m g Δ h W AB = E p B E p A = Δ E p (a na lo p gi ja onav l s gr janj

Више

Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske

Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske smjerove Opće napomene: (i) Sva direktna (neovisna) mjerenja vrijednosti nepoznatih

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

Romanian Master of Physics 2013 Теоријски задатак 1 (10 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са к

Romanian Master of Physics 2013 Теоријски задатак 1 (10 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са к Теоријски задатак 1 (1 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са квадратном основом (слика 1). Аутомобил се креће по путу који се састоји од идентичних

Више

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru

Више

4. ПРЕДАВАЊЕ 4. ИНТЕРАКЦИЈА ФОТОНА СА МАТЕРИЈОМ 4.1. Увод: Фотон: талас и честица. Таласни карактер светлости Чињеница да светлост може да се посматра

4. ПРЕДАВАЊЕ 4. ИНТЕРАКЦИЈА ФОТОНА СА МАТЕРИЈОМ 4.1. Увод: Фотон: талас и честица. Таласни карактер светлости Чињеница да светлост може да се посматра 4. ПРЕДАВАЊЕ 4. ИНТЕРАКЦИЈА ФОТОНА СА МАТЕРИЈОМ 4.1. Увод: Фотон: талас и честица. Таласни карактер светлости Чињеница да светлост може да се посматра као таласни феномен је потврдјена у експериментима

Више

Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аут

Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аут Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Иван Жупунски, Небојша Пјевалица, Марјан Урекар,

Више

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3 Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b

Више

Microsoft Word - Elektrijada_2008.doc

Microsoft Word - Elektrijada_2008.doc I област. У колу сталне струје са слике познато је: а) када је E, E = и E = укупна снага 3 отпорника је P = W, б) када је E =, E и E = укупна снага отпорника је P = 4 W и 3 в) када је E =, E = и E укупна

Више

Matematicke metode fizike II - akademska 2012/2013.g.

Matematicke metode fizike II - akademska 2012/2013.g. Besselove funkcije y(x) = m=0 a m x m+σ, x 2 y + xy + (x 2 ν 2 )y = 0 σ 2 = ν 2 (1 ± 2ν)a 1 = 0; n(n ± 2ν)a n + a n 2 = 0 za n 2. J ν (x) = n=0 Besselove funkcije prve vrste reda ν. ( 1) n ( x ) ν+2n n!γ(ν

Више

PowerPoint Presentation

PowerPoint Presentation МОБИЛНЕ МАШИНЕ II предавање 4.2 \ ослоно-кретни механизми на точковима, кинематика и динамика точка Кинематика точка обимна брзини точка: = t транслаторна брзина точка: = t Услов котрљања точка без проклизавања:

Више

Elektronika 1 udzb.indb

Elektronika 1 udzb.indb t.h r Poluvodička dioda.e le m Poluvodiči Poluvodička dioda Neke vrste dioda Sklopovi s diodama w 1.1. 1.2. 1.3. 1.4. en t.h r w w w.e le m en 1. 1. Poluvodička dioda Slika 1.1. Silicij Slika 1.2. Germanij

Више

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba

Више

Kvadrupolni maseni analizator, princip i primena u kvali/kvanti hromatografiji

Kvadrupolni maseni analizator, princip i primena u kvali/kvanti hromatografiji Kvadrupolni maseni analizator, princip i primena u kvali/kvanti hromatografiji doc dr Nenad Vuković, Institut za hemiju, Prirodno-matematički fakultet u Kragujevcu JONIZACIJA ELEKTRONSKIM UDAROM Joni u

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK Luka Vanjur DIELEKTRIČNA SPEKTROSKOPIJA NANOPOROZNIH DIELEKTRIKA Diplomski rad

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK Luka Vanjur DIELEKTRIČNA SPEKTROSKOPIJA NANOPOROZNIH DIELEKTRIKA Diplomski rad SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK Luka Vanjur DIELEKTRIČNA SPEKTROSKOPIJA NANOPOROZNIH DIELEKTRIKA Diplomski rad Zagreb, 2017. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI

Више

Ponovimo Grana fizike koja proučava svijetlost je? Kroz koje tvari svjetlost prolazi i kako ih nazivamo? IZVOR SVJETLOSTI je tijelo koje zr

Ponovimo Grana fizike koja proučava svijetlost je? Kroz koje tvari svjetlost prolazi i kako ih nazivamo? IZVOR SVJETLOSTI je tijelo koje zr Ponovimo Grana fizike koja proučava svijetlost je? Kroz koje tvari svjetlost prolazi i kako ih nazivamo? IZVOR SVJETLOSTI je tijelo koje zrači svjetlost. Primarni: Sunce, zvijezde, Sekundarni: Mjesec,

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 8 Vektori u prostoru. Skalarni proizvod vektora Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 8 1 / 11 Vektori u prostoru i pravougli koordinatni

Више

Slide 1

Slide 1 BETONSKE KONSTRUKCIJE 2 vježbe, 12.-13.12.2017. 12.-13.12.2017. DATUM SATI TEMATSKA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponavljanje poznatih postupaka

Више

Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић

Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Драган Пејић, Бојан Вујичић, Небојша Пјевалица,

Више

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16 7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.

Више

Microsoft Word - V03-Prelijevanje.doc

Microsoft Word - V03-Prelijevanje.doc Praktikum iz hidraulike Str. 3-1 III vježba Prelijevanje preko širokog praga i preljeva praktičnog profila Mali stakleni žlijeb je izrađen za potrebe mjerenja pojedinih hidrauličkih parametara tečenja

Више

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca

Више

PowerPoint Presentation

PowerPoint Presentation Keijsko tehnološki fakultet Sveučilišta u Splitu Stručni studij keijske tehnologije i aterijala Stručni studij prehrabene tehnologije Fizika uditorne vježbe 4 Rad i energija. Sudari. Ivica Sorić (Ivica.Soric@fesb.hr)

Више

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.

Више

Slide 1

Slide 1 Dvadeset četvrto predavanje 1 CILJEVI PREDAVANJA Pojačan efekat staklene bašte H 2 O i CO 2 kao apsorberi radijacije sa Zemlje radijaciono forsiranje Posledice globalnog zagrevanja Izvori i potrošnja gasova

Више

1_Elektricna_struja_02.03

1_Elektricna_struja_02.03 Elektrostatika i električna struja Tehnička fizika 2 01-08/03/19 Tehnološki fakultet Prisustvo na predavanjima 5 bod Laboratorijske vježbe 10 bod Test zadaci 1 10 bod Test zadaci 2 10 bod Test teorija

Више

Poravnanje različitih vrsta meduzvjezdane materije u širem području 3C 196 polja Ana Erceg 19. siječnja SAŽETAK Promatranje polja centriranog na

Poravnanje različitih vrsta meduzvjezdane materije u širem području 3C 196 polja Ana Erceg 19. siječnja SAŽETAK Promatranje polja centriranog na Poravnanje različitih vrsta meduzvjezdane materije u širem području 3C 196 polja Ana Erceg 19. siječnja 2019. SAŽETAK Promatranje polja centriranog na jakom radioizvoru 3C 196 na niskim radiofrekvencijama

Више

188 MEHANIKA, KVANTNA MEHANIKA, KVANTNA, radikalna modifikacija klasične mehanike i elektrodinamike prikladna za proračun (prognoziranje) svojstava i

188 MEHANIKA, KVANTNA MEHANIKA, KVANTNA, radikalna modifikacija klasične mehanike i elektrodinamike prikladna za proračun (prognoziranje) svojstava i 188 MEHANIKA, KVANTNA MEHANIKA, KVANTNA, radikalna modifikacija klasične mehanike i elektrodinamike prikladna za proračun (prognoziranje) svojstava i unutrašnjih pobuđenja atoma i molekula, te mogućnosti

Више

SVEUČILIŠTE U ZAGREBU

SVEUČILIŠTE U ZAGREBU SVEUČILIŠTE U ZAGREBU PRIROOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK Mijo Dropuljić Diplomski rad IZRADA INTERAKTIVNIH ANIMACIJA ZA SIMULIRANJE HARMONIČKOG OSCILATORA Zagreb, 8. SVEUČILIŠTE U ZAGREBU

Више

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln

Више

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www. ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело

Више

ELEKTRONIKA, SKLOPOVI ZA MIKROVALNU TEHNIKU 569 nije potpuno pravokutna, tako da ipak dolazi do male, promjene toka (si. 344). U magnetskom posmačnom

ELEKTRONIKA, SKLOPOVI ZA MIKROVALNU TEHNIKU 569 nije potpuno pravokutna, tako da ipak dolazi do male, promjene toka (si. 344). U magnetskom posmačnom ELEKTRONIKA, SKLOPOVI ZA MIKROVALNU TEHNIKU 569 nije potpuno pravokutna, tako da ipak dolazi do male, promjene toka (si. 344). U magnetskom posmačnom registru može za kašnjenje služiti RC-mreža, ali je

Више

10_Perdavanja_OPE [Compatibility Mode]

10_Perdavanja_OPE [Compatibility Mode] OSNOVE POSLOVNE EKONOMIJE Predavanja: 10. cjelina 10.1. OSNOVNI POJMOVI Proizvodnja je djelatnost kojom se uz pomoć ljudskog rada i tehničkih sredstava predmeti rada pretvaraju u proizvode i usluge. S

Више

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij PRINCIPI RADA ANA

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij PRINCIPI RADA ANA SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij PRINCIPI RADA ANALOGNIH I DIGITALNIH MJERNIH INSTRUMENATA Završni rad

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass Interferencija i valna priroda svjetlosti FIZIKA PSS-GRAD 23. siječnja 2019. 27.1 Načelo linearne superpozicije Kad dva svjetlosna vala, ili više njih, prolaze kroz istu točku, njihova se električna polja

Више

Elementarna matematika 1 - Oblici matematickog mišljenja

Elementarna matematika 1 - Oblici matematickog mišljenja Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s

Више

Stručno usavršavanje

Stručno usavršavanje TOPLINSKI MOSTOVI IZRAČUN PO HRN EN ISO 14683 U organizaciji: TEHNIČKI PROPIS O RACIONALNOJ UPORABI ENERGIJE I TOPLINSKOJ ZAŠTITI U ZGRADAMA (NN 128/15, 70/18, 73/18, 86/18) dalje skraćeno TP Čl. 4. 39.

Више

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan 1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2

Више

Klimaoprema katalog PPZEN

Klimaoprema katalog PPZEN 3/S3 v 2.4 (hr) ISTRUJNA ROZETA STUBIŠNI DISTRIBUTER VRTLOŽNI DISTRIBUTER STUBIŠNI KRILASTI IR, SDV, DSK www.klimaoprema.hr 9 SADRŽAJ Istrujna rozeta, tip IR... 211 Stubišni distributer vrtložni, tip SDV...

Више

PowerPoint Presentation

PowerPoint Presentation Hrvoje Skenderović, Institut za fiziku, Zagreb Kvantno računanje - budućnost informatike? Superpozicija, Entanglement, Kvantna kriptografija, Kvantna teleportacija,... Kvatno računanje Neke značajke kvantne

Више

UNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA FIZIKU Elektromagnetno indukovana transparentnost u konfiniranom atomu vodonika MASTER R

UNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA FIZIKU Elektromagnetno indukovana transparentnost u konfiniranom atomu vodonika MASTER R UNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA FIZIKU Elektromagnetno indukovana transparentnost u konfiniranom atomu vodonika MASTER RAD Student: Vladan Pavlović Mentor: dr Ljiljana Stevanović

Више

OD MONOKRISTALNIH ELEKTRODA DO MODELÂ POVRŠINSKIH REAKCIJA

OD MONOKRISTALNIH ELEKTRODA DO MODELÂ POVRŠINSKIH REAKCIJA UVOD U PRAKTIKUM FIZIKALNE KEMIJE TIN KLAČIĆ, mag. chem. Zavod za fizikalnu kemiju, 2. kat (soba 219) Kemijski odsjek Prirodoslovno-matematički fakultet Sveučilište u Zagrebu e-mail: tklacic@chem.pmf.hr

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

Univerzitet u Nišu Prirodno - matematički Fakultet Departman za fiziku Temperaturna zavisnost karakteristika poluprovodničkih lasera Master rad Studen

Univerzitet u Nišu Prirodno - matematički Fakultet Departman za fiziku Temperaturna zavisnost karakteristika poluprovodničkih lasera Master rad Studen Univerzitet u Nišu Prirodno - matematički Fakultet Departman za fiziku Temperaturna zavisnost karakteristika poluprovodničkih lasera Master rad Student: Marija Grofulović Mentor: Prof. dr Zoran Pavlović

Више

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc)

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc) Zadatak Pokažite, koristeći svojstva esa, da je ( 6 ) 5 Svojstva esa funkcije u točki: Ako je k konstanta, k k c c c f ( ) L i g( ) M, tada vrijedi: c c [ f ( ) ± g( ) ] c c f ( ) ± g( ) L ± M c [ f (

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass Kinematika u dvije dimenzije FIZIKA PSS-GRAD 11. listopada 017. PRAVOKUTNI KOORDINATNI SUSTAV U RAVNINI I PROSTORU y Z (,3) 3 ( 3,1) 1 (0,0) 3 1 1 (x,y,z) x 3 1 O ( 1.5,.5) 3 x y z Y X PITANJA ZA PONAVLJANJE

Више

Univerzitet u Nišu Prirodno-matematički fakultet Departmant za fiziku MASTER RAD Prostiranje laserskih pulseva pri uslovima elektromagnetno indukovane

Univerzitet u Nišu Prirodno-matematički fakultet Departmant za fiziku MASTER RAD Prostiranje laserskih pulseva pri uslovima elektromagnetno indukovane Univerzitet u Nišu Prirodno-matematički fakultet Departmant za fiziku MASTER RAD Prostiranje laserskih pulseva pri uslovima elektromagnetno indukovane transparentnosti u kvantnim tačkama oblika kvadra

Више

Zadatak 2.1. Procijeniti srednji broj fotona u svakom modu zra~enja crnog tijela pri sobnoj temperaturi.

Zadatak 2.1. Procijeniti srednji broj fotona u svakom modu zra~enja crnog tijela pri sobnoj temperaturi. Zadatak.. Procijeniti srednji broj fotona u sakom modu zračenja crnog tijela pri sobnoj temperaturi. E Rješenje: Srednji broj fotona u modu je: n = =. Na osnou exp / k T ( B =, 4 zadatka. za idljii dio

Више

Natjecanje 2016.

Natjecanje 2016. I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka

Више

KURIKULUM NASTAVNOG PREDMETA FIZIKA ZA OSNOVNE ŠKOLE I GIMNAZIJE A. SVRHA I OPIS PREDMETA Fizika proučava energiju i materiju, međudjelovanja te giban

KURIKULUM NASTAVNOG PREDMETA FIZIKA ZA OSNOVNE ŠKOLE I GIMNAZIJE A. SVRHA I OPIS PREDMETA Fizika proučava energiju i materiju, međudjelovanja te giban KURIKULUM NASTAVNOG PREDMETA FIZIKA ZA OSNOVNE ŠKOLE I GIMNAZIJE A. SVRHA I OPIS PREDMETA Fizika proučava energiju i materiju, međudjelovanja te gibanja u prostoru i vremenu. Naziv potječe od grčke riječi

Више

ATOM ATOMSKA JEZGRA 479 turu je složeniji poliedar sastavljen od 14 ploha. Na si. 37 prikazani su zonski poliedri za neke od navedenih i neke druge kr

ATOM ATOMSKA JEZGRA 479 turu je složeniji poliedar sastavljen od 14 ploha. Na si. 37 prikazani su zonski poliedri za neke od navedenih i neke druge kr ATOM ATOMSKA JEZGRA 479 turu je složeniji poliedar sastavljen od 14 ploha. Na si. 37 prikazani su zonski poliedri za neke od navedenih i neke druge kristalne strukture. U ovim jednostavnijim razmatranjima

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske optike (lom i refleksija svjetlosti). Određivanje žarišne daljine tanke leće Besselovom metodom. Teorijski dio Zrcala i leće su objekti

Више