DOI: Građevinar 4/2018 Primljen / Received: Ispravljen / Corrected: Prihvaćen / Accepted:

Величина: px
Почињати приказ од странице:

Download "DOI: Građevinar 4/2018 Primljen / Received: Ispravljen / Corrected: Prihvaćen / Accepted:"

Транскрипт

1 DOI: Primljen / Received: Ispravljen / Corrected: Prihvaćen / Accepted: Dostupno online / Available online: Analiza zajedničke vjerojatnosti pojave velikih voda na ušćima primjenom bivarijatnih kopula Autori: Izvorni znanstveni rad Analiza zajedničke vjerojatnosti pojave velikih voda na ušćima primjenom bivarijatnih kopula Doc.dr.sc. Gordon Gilja, dipl.ing.građ. Sveučilište u Zagrebu Građevinski fakultet ggilja@grad.hr Procjena opasnosti od poplava za hidrološki događaj zadanog povratnog razdoblja jest temelj projektiranja građevina namjenjenih sustavu obrane od poplava. Učestalo pojavljivanje velikih voda u kratkom razdoblju upozorava kako treba preispitati tradicionalne pristupe procjenjivanju vjerojatnosti njihovog pojavljivanja. U ovom radu procijenjena je opasnost od istovremene pojave velike vode na rijeci Savi i njezinom pritoku za dva ušća. Rezultati pokazuju da se trend protoka procijenjenih bivarijatnom kopulom poklapa s mjerenjima protoka velike vode godine. Ključne riječi: opasnost od poplava, obrana od poplava, bivarijatne kopule, rijeka Sava, ušće Izv.prof.dr.sc. Eva Ocvirk, dipl.ing.građ.; dipl.ing.mat. Sveučilište u Zagrebu Građevinski fakultet ocvirk@grad.hr Original scientific paper Joint probability analysis of flood hazard at river confluences using bivariate copulas Estimation of flood hazard associated with return period of a hydrologic event is the basis for design of flood protection structures. More frequent occurrence of flood events in recent history has imposed the need to reconsider traditional hydrological approaches to estimation of high flow events. This paper focuses on estimation of peak flood discharge at two confluences of the Sava River. The results show that the peak discharge trend estimated using bivariate copulas is comparable to the values measured during an extreme flood event in Key words: flood hazard, flood protection, bivariate copulas, Sava River, confluence Prof.dr.sc. Neven Kuspilić, dipl.ing.građ. Sveučilište u Zagrebu Građevinski fakultet kuspa@grad.hr Wissenschaftlicher Originalbeitrag Analyse der gemeinsamen Wahrscheinlichkeiten des Auftretens von Hochwasser an Mündungen durch Anwendung bivariater Copula Die Einschätzung der Hochwassergefahr für hydrologische Ereignisse des festgelegten Rückkehrzeitraums ist die Grundlage für die Planung von Gebäuden, die für das Hochwasserschutzsystem gedacht sind. Das häufige Auftreten von Hochwasser in einem kurzen Zeitraum weist darauf hin, dass die traditionellen Ansätze der Einschätzung der Wahrscheinlichkeit ihres Auftretens überprüft werden müssen. In dieser Abhandlung wird für zwei Mündungen die Gefahr eines gleichzeitigen Auftretens von Hochwasser am Fluss Save und ihrem Nebenfluss eingeschätzt. Die Ergebnisse zeigen, dass sich der Trend des Durchflusses, eingeschätzt anhand bivariater Copula, mit den Messungen des Durchflusses des Hochwassers von 2014 deckt. Schlüsselwörter: Hochwassergefahr, Hochwasserschutz, bivariate Copula, Fluss Save, Mündungen 267

2 1. Uvod Vodni val nastaje interakcijom brojnih varijabli kao što su: intenzitet oborina, trajanje i prostorna raspodjela kiše na porječju, karakteristike porječja i korištenje zemljišta, režim rada akumulacija, itd. Maksimalni vršni protok vodnog vala je samo jedna od njegovih karakteristika, ali najvažnija s aspekta zaštite od poplava. Stoga je maksimalni protok najčešće korištena varijabla u univarijatnim metodama analize učestalosti za procjenu opasnosti od poplava prilikom projektiranja hidrotehničkih građevina [1]. Rezultat hidroloških analiza je izračun vrijednosti projektnih varijabli za korištenje u proračunu konstrukcije i proračunu funkcionalnosti u procesu projektiranja. Multivarijatna priroda vodnog vala podrazumijeva da je za potpun opis njenih karakteristika potrebno uzeti u obzir istovremeno prekoračenje kritičnih vrijednosti koreliranih varijabli kako bi vjerojatnost prekoračenja projektnog protoka odražavala najnepovoljniju kombinaciju s drugim varijablama za traženu namjenu [2]. U brojnim radovima od 1980-ih godina su primjenjivane bivarijatne i multivarijatne metode analize vjerojatnosti za izračun varijabli mjerodavnih za opasnost od poplave pod uvjetnom distribucijom, čiji su se rezultati znatno razlikovali od onih izračunanih univarijatnim metodama [3]. Pokazano je da pri nailasku vodnog vala postoji korelacija između njegovog maksimalnog protoka, volumena i trajanja, što se različito odražava na zahtjeve kada treba projektirati ovisno o namjeni hidrotehničke građevine [4]. Zajednička funkcija distribucije maksimalnog protoka i volumena vodnog vala primjenjuje se za projektiranje retencija [2], procjenu parametara sintetičkog hidrograma [1, 5], projektiranje sustava za zaštitu od poplava [6, 7] ili akumulacija [8]. Zajednička funkcija distribucije maksimalnih protoka dviju rijeka primjenjuje se za modeliranje istovremene pojave velikih voda u složenim riječnim sustavima [9]. Bivarijatna analiza učestalosti velikih voda omogućuje beskonačno mnogo kombinacija utjecajnih varijabli duž slojnice koja predstavlja njihovo zajedničko povratno razdoblje. Za praktičnu primjenu bivarijatnog pristupa potrebno je unutar velikog broja informacija o mogućem ishodu hidrološkog događaja izdvojiti podskup mjerodavnih događaja za traženu primjenu. Kombinacije vrijednosti varijabli uz rubove slojnice su manje vjerojatne zato što je povećanje jedne varijable kompenzirano smanjenjem druge varijable, uvjetovano smanjenjem vjerojatnosti njihove koincidencije [1]. Volpi i Fiori su predložili praktičnu metodologiju kojom je moguće identificirati mjerodavne kombinacije varijabli s podskupa slojnice za korištenje pri projektiranju [2]. Bivarijatna analiza učestalosti maksimalnog protoka u kombinaciji s drugom varijablom kao što je trajanje ili volumen vodnog vala primjenjuje se najčešće za projektiranje akumulacija [4, 10], dok u riječnim potezima, čiji režim voda odražava prirodni hidrološki ciklus, volumen vodnog vala ne pokazuje značajnu korelaciju s njegovim maksimalnim protokom [6]. Izračun opasnosti od poplava na ušću dviju rijeka predstavlja izazov jer svaka rijeka pridonosi ukupnoj opasnosti od poplava uzrokovanjem uspora, a time većoj nepouzdanosti izračuna konsumpcijske krivulje, jer je nemoguće odrediti jednoznačan funkcijski odnos vodostaja i protoka. Analiza učestalosti velikih voda na ušćima je važna zbog projektiranja nasipa koji se moraju nadvisiti kako bi osigurali nesmetan prolazak vodnog vala u slučaju koincidencije velikih voda na glavnoj rijeci i njenom pritoku. Potrebno je iznaći ujedno točan i praktičan pristup za izračun opasnosti od poplave na ušću, uz istovremeno premašenje koincidentnih protoka na riječnom paru upotrebom zajedničke funkcije distribucije protoka. U ovom radu analizirana je učestalost koincidentnih velikih voda rijeke Save i njenih pritoka za izračun zajedničke funkcije distribucije protoka na istraženim ušćima koristeći izmjerene podatke o protocima. Procjena zajedničke funkcije distribucije koincidentnih velikih voda temelji se na identificiranim marginalnim distribucijama maksimalnih godišnjih protoka parova rijeka na dvama ušćima koristeći bivarijatne kopule. Postavljena hipoteza glasi: moguće je razviti pristup metode kopule za točnu procjenu maksimalnog protoka hidrološkog događaja primjenom zajedničke funkcije distribucije koincidentnih velikih voda glavne rijeke i njenog pritoka. Za analizu su poslužila dva ušća na rijeci Savi: ušće rijeke Kupe i ušće rijeke Une. Glavni je cilj rada prikazati praktični pristup za procjenu projektnih uvjeta velikih voda koji je primjenjiv za hidrološki problem zajedničke vjerojatnosti prekoračenja kritičnih protoka na riječnim ušćima. Podaci o protocima preuzeti su s vodomjernih postaja uzvodno od ušća na rijeci Savi i njenom pritoku. Izbor podataka za analizu vođen je pretpostavkom da se više informacija o hidrološkom događaju može uzeti u obzir ako se svaku rijeku promatra kroz njezin režim voda, a zatim se njihov zajednički utjecaj kvantificira kroz informaciju o zajedničkom povratnom razdoblju premašenja para protoka na ušću. Za provedbu predloženog pristupa primjenjena je sljedeća metodologija: -- određivanje funkcije distribucije maksimalnih godišnjih protoka na rijeci Savi i pritoku -- određivanje zajedničke funkcije distribucije za parove maksimalnih godišnjih protoka na ušću koristeći funkciju kopule -- usporedba najnepovoljnije kombinacije protoka određene zajedničkom vjerojatnošću prekoračenja s tradicionalnim univarijatnim analizama učestalosti velikih voda na temelju izmjerenih podataka o protoku rijeke Save nizvodno od ušća -- usporedba izračunanih podataka s nedavnim mjerenjem protoka izmjerenog tijekom pojave značajnog hidrološkog događaja okarakteriziranog kao 1000-godišnja velika voda od strane Državnog hidrometeorološkog zavoda (DHMZ). 2. Teorijska polazišta Modeli za multivarijatnu analizu učestalosti velikih voda zahtijevaju više ulaznih podataka od univarijatnih, što je nedostatak u slučaju analize hidroloških serija jer su one 268

3 Analiza zajedničke vjerojatnosti pojave velikih voda na ušćima primjenom bivarijatnih kopula često ograničene intervalom prikupljanja podataka, dužinom rada vodomjerne postaje od njenog uspostavljanja te su pod utjecajem promjena u režimu voda uvjetovanim prirodnim ili antropogenim djelovanjem. Ograničenje modela multivarijatnih distribucija vjerojatnosti je u tome što zahtijevaju da marginalne distribucije prate istu teorijsku distribuciju. Ovaj uvjet je teško ispuniti zbog različitih karakteristika utjecajnih varijabli koje se odražavaju na njihovu distribuciju. Uzimajući u obzir ta ograničenja, primjena multivarijatne analize koreliranih slučajnih varijabli u praksi se svodi najčešće na bivarijatni slučaj [6]. Za multivarijatno modeliranje hidroloških varijabli, uključujući izračun zajedničke funkcije distribucije koreliranih slučajnih varijabli, mogu se primjeniti kopule. Kopule su funkcije koje sjedinjuju više univarijatnih marginalnih kumulativnih funkcija distribucije u zajedničku kumulativnu funkciju distribucije. Najveća prednost kopula je njihova fleksibilnost, tj. mogućnost određivanja multivarijatne distribucije nezavisno od vrste marginalnih distribucija [2, 3]. Detaljniji opis teorije kopula može se naći u radu Sklara (1959) i Nelsena (2006). Prema Sklarovom teoremu, bilo koja n-dimenzionalna funkcija distribucije F se može formulirati pomoću kopule i njenih marginalnih distribucija, a može se zapisati kao gdje su F Xi (x i ), i = 1,..., n marginalne distribucije slučajnog vektora (X 1, X 2,..., X n ). Ako su te marginalne distribucije kontinuirane, onda postoji jedna kopula funkcija C, koja se može zapisati kao Uvjetna funkcija distribucije može se izračunati nakon odabira prikladne kopula funkcije. Uvjetna funkcija distribucije varijable U 1, ako je U 2 =u 2, može se izraziti kao: = Nadalje, uvjetna funkcija distribucije varijable U 1, ako je U 2 <u 2, može se izraziti kao: Funkcija distribucije vjerojatnosti kopula funkcije može se izraziti kao: Kopula C se naziva distribucija ekstremnih vrijednosti ako postoji kopula C F takva da: (1) (2) (3) (4) (5) Za sve (u 1,, u d ) [0,1] d. Pri problematici modeliranja ekstremnih vrijednosti potrebno je primijeniti max-stabilne distribucije i definirati ograničenja za korištene kopule [11]. Nakon izbora prikladne funkcije kopule koja ispunjava tražene uvjete, zajednička funkcija distribucije može biti izračunana [12, 13]. Najveći utjecaj na rezultate kopula funkcije ima odabir marginalnih distribucija jer ih je moguće definirati neovisno za svaku korištenu varijablu, kao i njihovu zajedničku funkciju distribucije. Najčešće korištene varijable vezane uz multivarijatnu hidrološku analizu primjenom kopula jesu maksimalni godišnji protoci vodnih valova te njihov pripadajući volumen i trajanje. Izbor prikladne kopula funkcije je u istraživan brojnim studijama koje su rezultirale prijedlozima korištenja kopula za razne hidrološke probleme. Volpi i Fiori [2] su primijenili Gumbel-Hougaardovu kopulu za modeliranje zavisnosti između maksimalnog protoka i volumena vodnog vala. Gräler i dr. [1] su primijenili sintetizirani set podataka da bi prikazali razlike u rezultatima 2D i 3D kopula za različite kombinacije hidroloških varijabli. Xu i dr. [5] su usporedili četiri kopule iz Arhimedove obitelji kopula za određivanje projektnog hidrograma. Bender i dr. [14] su primijenili Gumbelovu kopulu za bivarijatnu analizu koincidentnih protoka na ušću, Bender i dr. [15] su nastavili istraživati bivarijatnu analizu protoka na ušćima na kojima velike vode ne koincidiraju. Szolgay i dr. [16] su procijenili primjenjivost različitih tipova kopula na zavisnost maksimalnog protoka i volumena vodnog vala za više podslivova u Austriji zajedno s analizom duljine niza korištenih podataka na rezultate kopula. Šraj i dr. [17] su usporedili tri obitelji kopula za bivarijatnu analizu učestalosti poplava za rijeku Savu u Sloveniji. Ozga-Zielinski i dr. [18] sugeriraju da za vodne valove nastale otapanjem snijega Gumbel-Hougaardova kopula daje točnije rezultate od Gaussove kopule. Arhimedova obitelj kopula je najpoželjnija za hidrološku analizu jer je većinu njenih kopula lako konstruirati, a mogu opisati i pozitivnu i negativnu korelaciju između korištenih varijabli [17]. Prema dostupnoj literaturi, najčešće korištene jednoparametarske kopule iz Arhimedove obitelji su Gumbel-Hougaardova, Ali-Mikhail-Haqova, Frankova i Cook- Johnsonova kopula. Za Gumbel-Hougaardovu kopulu odnos Kendallovog koeficijenta i funkcije pokazuje da samo pozitivna zavisnost između varijabli može biti analizirana - maksimalni protok i volumen vodnog vala pozitivno su korelirani te se njihova zavisnost može opisati ovom kopulom [5, 19]. Trajanje vodnog vala i maksimalni protok najčešće su negativno korelirani te stoga nije primjereno upotrebljavati Gumbel- Hougaardovu kopulu za određivanje njihove zajedničke funkcije distribucije. Sve navedeno vrijedi i za Cook-Johnsonovu kopulu. Ali-Mikhail-Haqova kopula se može primijeniti i za pozitivno (6) 269

4 i negativno korelirane varijable, ali ne u slučajevima kada se iznos Kendallovog koeficijenta približava vrlo visokim ili vrlo niskim vrijednostima. Frankova kopula se može primijeniti i za pozitivno i negativno korelirane varijable, bez obzira na iznos Kendallovog koeficijenta. Gumbel-Hougaardovu kopulu, uz to što ne dopušta negativnu zavisnost, karakterizira čvrsta zavisnost za desni rep i slaba zavisnost za lijevi rep. Ako je poznato da među varijablama postoji čvrsta zavisnost pri većim vrijednostima i relativno slaba zavisnost pri manjim vrijednostima, Gumbel-Hougaardova kopula je prikladan izbor [3]. Stoga je u ovom radu odabrana Gumbel-Hougaardova kopula za modeliranje zavisnosti između maksimalnog protoka rijeke Save i njezinih pritoka. Parametar kopule je izračunan na temelju Kendallovog koeficijenta tau. Početni zadatak pri izgradnji bivarijatne kopule je odrediti marginalne distribucije koreliranih varijabli. Usporedba distribucije populacije maksimalnih godišnjih protoka s nekom od parametarskih distribucija može se provesti primjenom npr. hi-kvadrat testa [5] ili Anderson-Darlingovog testa [14]. Nakon određivanja marginalnih funkcija distribucije, može se pomoću kopule izračunati zajednička funkcija distribucije procijenjena primjerice na temelju Cramér-von-Misesova kriterija [15]. Primjenom prilagođenih marginalnih funkcija distribucije, podaci o protoku se transformiraju u uniformno distribuirane varijable za koje se metodom odabrane kopule računa zajednička funkcija distribucije. Nakon što se odredi zajednička funkcija distribucije, podaci se ponovno transformiraju iz uniformnih varijabli u njihovu osnovnu domenu koristeći inverznu funkciju [2]. Detaljan opis odabira marginalnih distribucija i procjena parametara kopule navode se u radu Grälera i dr. [1]. 3. Predmetna dionica Rijeka Sava nastaje spajanjem Save Dolinke i Save Bohinjke u Radovljici u Sloveniji. Nastavlja teći kroz Hrvatsku gdje tvori granicu s Bosnom i Hercegovinom te naposljetku utječe u Dunav u Srbiji, slika 1. Rijeka Sava je desni pritok Dunava, najveći prema ukupnoj duljini (990 km) i volumenu (prosječni protok na ušću je 1564 m³/s) te drugi najveći prema veličini porječja (95419 km 2 ). Rijeka Sava ima peripanonski kišno-snježni režim s pojavom velikih voda tijekom jeseni i zime, od kolovoza do veljače. Za analizu su odabrana dva ušća desnih pritoka rijeke Save, rijeka Kupe (rkm ) i Une (rkm ). Ukupna površina porječja Kupe iznosi km², a površina porječja Save do ušća Kupe kod Siska iznosi km 2. Vodni režim Kupe karakteriziraju proljetne i jesenske velike vode, u skladu s njenim kišno-snježnim režimom [20]. Rijeka Una je ukupne duljine 214 km, ukupne površine porječja km², a površina porječja rijeke Save do ušća Une kod Jasenovca iznosi km 2. Vodni režim rijeke Une je posavska varijanta kišno-snježnog režima koji karakteriziraju velike vode u travnju te ožujku, travnju, svibnju i studenom [21]. Za analizu opasnosti od poplava potrebno je raspolagati kontinuiranim zapisom protoka ili vodostaja s vodomjerne postaje koja odražava režim voda na promatranoj riječnoj dionici. Protoci, koji su primarni generator opasnosti od poplava, mogu se izračunati iz izmjerenih vodostaja primjenjujući kalibriranu konsumpcijsku krivulju. Analizirana ušća rijeka Kupe i Une su hidrološki izučena ušća za koja su dostupni dugi nizovi mjerenja vodostaja i protoka. Režim voda rijeke Save kod ušća Kupe prati se na VP Strelečko uzvodno od ušća i VP Crnac nizvodno, a režim voda rijeke Kupe prati se na VP Farkašić. Sve tri vodomjerne postaje mjere podatke od godine naovamo, s prekidom u razdoblju od do godine. Protok se mjeri na VP Farkašić i VP Crnac, pa su protoci na VP Strelečko izračunati oduzimanjem mjerenja s VP Farkašić od onog s VP Crnac. Režim voda rijeke Save kod ušća Une prati se na VP Jasenovac uzvodno od ušća i VP Gradiška nizvodno, a režim voda rijeke Une prati se na VP Dubica. Sve tri vodomjerne postaje mjere podatke od godine naovamo, s prekidom u razdoblju od g. do g. Rijeke Una i Kupa imaju sličan režim voda sa srednjim protokom Q SR,KUPA = 195 m 3 /s i Q SR,UNA = 227 m 3 /s; i maksimalnim Slika 1. Pregledna karta porječja rijeke Save [22] 270

5 Analiza zajedničke vjerojatnosti pojave velikih voda na ušćima primjenom bivarijatnih kopula Tablica 1. Karakteristični protoci na analiziranim vodomjernim postajama Karakteristični protoci Rijeka Vodomjerna postaja Udaljenost od ušća [rkm] Q SR [m 3 /s] Q MAX [m 3 /s] Sava Strelečko Kupa Farkašić Sava Crnac Sava Jasenovac Una Dubica Sava Gradiška protokom Q MAX,KUPA = 1585 m 3 /s i Q MAX,UNA = 1808 m 3 /s. Niz mjerenja na vodomjernim postajama uz ušće Une je duži ( ) nego uz ušće Kupe ( ), što se može odraziti na izračunane parametre režima voda. Protok se mjeri na sve tri postaje: VP Jasenovac i VP Gradiška na rijeci Savi i VP Dubica na rijeci Uni. Karakteristični protoci, izmjereni ili izračunani, na svim vodomjernim postajama prikazani su u tablici 1. U prethodnih deset godina zabilježen je povećan broj velikovodnih događaja na poriječju rijeke Save: godine zabilježen je najviši vodostaj nakon poplave godine; godine je na Kupi kod Karlovca izmjeren protok 100-godišnjeg povratnog razdoblja. Naposljetku, u svibnju u donjem toku rijeke Save zabilježen je protok 1000-godišnjeg povratnog razdoblja. Povećanu učestalost i intenzitet velikih voda na rijeci Savi i njenim pritocima ne može se više ignorirati, osobito nakon svibnja kada je popustio nasip nakon višednevnog trajanja velikih voda i uzrokovao katastrofalne posljedice i evakuaciju stanovništva iz više naselja. Statističkom analizom je utvrđeno da izmjereni maksimalni protok vodnog vala (Q = 6000 m 3 /s, mjeren ) nizvodno od ušća rijeke Bosne u Savu odgovara 1000-godišnjem povratnom razdoblju [23]. Na dionici rijeke uzvodno, od Jasenovca do Slavonskog Broda, protok je odgovarao nižem, 100-godišnjem povratnom razdoblju. Postalo je očito jasno da su na poplavu najveći utjecaj imali pritoci rijeke Bosne. Iako protok rijeke Save uzvodno nije bio ekstreman, koincidencija dva vodna vala je rezultirala najvećim protokom ikad izmjerenim na rijeci Savi nizvodno od ušća rijeke Bosne. Abdulaj i dr. usporedili su teoretsku univarijatnu funkciju distribucije prilagođenu na podatke o izmjerenim protocima u vremenu duljem od 100 godina i zaključili da čak i u slučaju odabira najpovoljnije funkcije distribucije izmjereni protok odgovara 1000-godišnjoj velikoj vodi [23]. Zbog svoje nagle pojave i posljedica koje je izazvao, ovaj velikovodni događaj je potaknuo niz novih analiza i preispitivanje tradicionalnih pristupa procjeni velikih voda rijeke Save. 4. Rezultati i rasprava Uzevši u obzir režim voda porječja rijeke Save, očekuje se da će prilikom nailaska velikih voda doći do koincidencije vodnih valova Save i jednog ili više njezinih pritoka. Koincidencija velikih voda može posljedično uzrokovati vodni val čija će razina nadvisiti postojeće nasipe i poplaviti branjeno područje, što je u potvrđeno u više nedavnih događaja. Koincidencija vodnih valova, analizirana u ovom radu, provedena je na podacima o maksimalnim godišnjim protocima u vremenskom nizu za cijelo razdoblje rada vodomjerne postaje (slika 2.). Parovi maksimalnih godišnjih protoka rijeke Save i njenih pritoka pokazuju da u 22 % slučajeva za ušće Kupe i 44 % slučajeva za ušće Une dolazi do koincidencije velikih voda obiju rijeka, uzevši u obzir kriterij da vremenska razlika pojave vrha vodnog vala na glavnoj rijeci i njenom pritoku nije veća od 7 dana. Relativno mala vremenska razlika pojave vodnih valova na glavnoj rijeci i njenom pritoku upućuje na opravdanost korištenja parova maksimalnih godišnjih protoka za bivarijatnu analizu učestalosti velikih voda. Slika 2. Maksimalni godišnji protoci vodnih valova za ušće Kupe (gore) i ušće Une (dolje) Iz vremenske serije izmjerenih maksimalnih godišnjih protoka vodnih valova za cijelo razdoblje mjerenja uočava se da maksimalni protoci rijeke Kupe ne koincidiraju često s onima rijeke Save (slike 2. i 3.). U razdoblju prije godine velike vode rijeke Save najčešće su koincidirale s malim vodama rijeke Kupe, i obratno. U razdoblju nakon maksimalni protoci dviju rijeka koincidiraju gotovo svake godine. Ovaj režim nailaska vodnih valova jasno se vidi na dijagramu rasipanja parova maksimalnih godišnjih protoka za VP Strelečko i VP Farkašić (slika 3.). Dijagram rasipanja pokazuje da bilo koji maksimalni 271

6 Slika 3. Parovi maksimalnih godišnjih protoka vodnih valova: a) ušće Kupe, b) ušće Une godišnji protok na VP Strelečko može koincidirati s cijelim rasponom protoka na VP Farkašić, i obratno. Uzvodno od ušća Kupe obje rijeke imaju slične karakteristične protoke (slika 2.) - veći maksimalni godišnji protoci se javljaju na Savi, no apsolutni maksimum tijekom razdoblja mjerenja je sličan za obje rijeke (tablica 1.). Sklonost prema pojavi maksimalnih godišnjih protoka na ušću Une znatno se razlikuje od one na ušću Kupe: protoci Save i Une koincidiraju i pri velikim i malim vodama (slika 2., slika 3.). Najgornja desna točka na slici 3. predstavlja poplavni događaj iz godine, kada je najveći ikad zabilježeni protok na VP Jasenovac koincidirao s drugim najvećim ikad zabilježenim protokom na VP Dubica. Iako je u razdoblju od do zabilježeno nekoliko sličnih događaja, navedeni događaj je imao najveći zbrojeni protok od godine. Tijekom događaja iz vodostaj na VP Crnac uzvodno je dosegao apsolutni maksimum od uspostavljanja mjerenja, što je potaknulo postavljanje privremenih nadvišenja nasipa kako bi se spriječilo prelijevanje preko nasipa i osiguralo zaobalje od poplave. Slične je naravi i već spomenuti događaj iz kada je došlo do pucanja nasipa nizvodno od Županje, pri čemu je iste godine na VP Jasenovac zabilježen treći najveći ikad zabilježeni protok. Tada prilikom nailaska vodnog vala nije došlo do koincidencije velikih voda Save i Une, što je posljedično utjecalo na manju opasnost od poplava nizvodno. Uzevši u obzir učestalu koincidenciju maksimalnih godišnjih protoka pri kojima se javljala potreba za privremenim mjerama nadvišenja nasipa, javlja se sumnja u opravdanost tradicionalnog pristupa određivanju opasnosti od poplava na riječnim ušćima Primjena tradicionalnog pristupa određivanja distribucije maksimalnih godišnjih protoka univarijatnom metodom Na podatke o maksimalnim godišnjim protocima sa svih vodomjernih postaja prilagođene su teorijske funkcije distribucije kako bi se utvrdili protoci za karakteristična povratna razdoblja tradicionalnim pristupom uspoređujući ih s metodom kopule. Za svaki niz podataka s vodomjerne postaje prilagođene su sljedeće funkcije distribucije: lognormalna, gama, Pearsonova i Weibullova. Pri ocjenjivanju oblika distribucije populacije četiri navedene parametarske distribucije primjenjen je Kolmogorov-Smirnov (K-S) test radi provjere hipoteze da podaci o maksimalnim godišnjim protocima prate teorijsku distribuciju. Kriterij korišten u testu o obliku distribucije populacije je p-vrijednost na način da je definiran prag signifikantnosti za odbacivanje postavljene hipoteze o distribuciji. Ako je p-vrijednost veća od praga signifikantnosti (p 0,05), odabrana Tablica 2. Sažetak prilagođenih univarijatnih teorijskih funkcija distribucije i pripadni protoci za karakteristična povratna razdoblja Q PR [m 3 /s] Q MAX [m 3 /s] Vodomjerna postaja Prilagođena distribucija p-vrijednost Q 50 Q 100 Q 200 Q 500 Q 1000 Izmjereno Povratno razdoblje [godina] Strelečko gama 0, Farkašić gama 0, Crnac gama 0, Jasenovac lognormalna 0, Dubica gama 0, Gradiška lognormalna 0,

7 Analiza zajedničke vjerojatnosti pojave velikih voda na ušćima primjenom bivarijatnih kopula teorijska distribucija dobro opisuje podatke o protocima. K-S test pokazuje da hipoteza ne može biti odbačena na 5-postotnoj razini signifikantnosti za sve prilagođene distribucije te su one s najvećom p-vrijednošću odabrane za opis podataka. Rezultati K-S testa su prikazani u tablici (tablica 2.) samo za odabrane distribucije, zajedno s pripadajućim karakterističnim protocima za raspon povratnih razdoblja. Protoci za odabrana povratna razdoblja izračunani su kao recipročna vrijednost vjerojatnosti prekoračenja protoka. Distribucija maksimalnih godišnjih protoka prati gama ili lognormalnu distribuciju na svim vodomjernim postajama, no s različitim vrijednostima parametara distribucije za svaku postaju. Maksimalni protoci rijeke Kupe i rijeke Save uzvodno od ušća Kupe prate slične teorijske distribucije, što je očekivano uzevši u obzir sličnost njihovog režima voda. Na VP Crnac su godišnji maksimalni protoci grupirani u uskom području što čini njihovu teorijsku distribuciju uskom, dok je istovremeno nekolicina godišnjih maksimalnih protoka manjeg iznosa (<1900 m 3 /s) pomiče ulijevo. Takvo grupiranje protoka rezultira relativno niskom procjenom protoka velikih povratnih razdoblja. Kada se za maksimalni ikad izmjereni protok Q MAX iz teorijske funkcije distribucije izračuna povratno razdoblje, dobije se da je ono samo 17 godina (tablica 2.). Režim rijeke Save uzvodno od ušća na VP Strelečko pokazuje slične karakteristike za čiji je Q MAX povratno razdoblje 48 godina, dok je povratno razdoblje za Q MAX rijeke Kupe 145 godina. Za razliku od ušća Kupe, na ušću Une maksimalni godišnji protoci rijeke Save prate lognormalnu distribuciju, a protoci rijeke Une prate gama distribuciju (tablica 2.). Maksimalni godišnji protoci rijeke Une usko su grupirani, s malim brojem nižih vrijednosti protoka, a maksimalni godišnji protoci rijeke Save prate teorijsku distribuciju s vrlo velikim protocima na repu distribucije. Kada se za maksimalni ikad izmjereni protok Q MAX iz teorijske funkcije distribucije izračuna povratno razdoblje, dobije se značajna razlika: 585 godina za rijeku Savu i 65 godina za rijeku Unu, što odražava razlike prilagođenih funkcija distribucije. Za VP Gradiška nizvodno povratno razdoblje Q MAX je usporedivo s VP Jasenovac i iznosi 306 godina. Ovi rezultati potvrđuju analizu koincidencije maksimalnih godišnjih protoka vodnih valova kojom je pokazano da često koincidiraju, pomičući histogram izmjerenih podataka prema repu distribucije. poglavlju, maksimalni godišnji protoci rijeke Save ne koincidiraju uvijek s onima rijeke Kupe, dok s onima rijeke Une u pravilu koincidiraju sve češće (slika 3.). Prethodna analiza je provedena na parovima maksimalnih godišnjih protoka, bez utvrđivanja jesu li maksimalni godišnji protoci rijeke Save i pritoka za pojedinu godinu posljedica istoga hidrološkog događaja ili različitih hidroloških događaja. Korelacija između parova maksimalnih godišnjih protoka rijeke Save i pritoka procijenjena je primjenom Kendallovog neparametarskog koeficijenta korelacije, koji ne ovisi o distribuciji varijabli i nije osjetljiv na netipične vrijednosti parova podataka. Rezultati pokazuju da postoji pozitivna veza između protoka rijeke Save i pritoka za oba ušća: Kendallov tau iznosi 0,07 za parove protoka na ušću Kupe (Strelečko-Farkašić) i 0,40 za parove protoka na ušću Une (Jasenovac-Dubica). Zajedničko povratno razdoblje korespondentnih maksimalnih godišnjih protoka na razmatranim ušćima na Savi izračunano je pomoću Gumbel-Hougaardove kopule koja je u dostupnoj literaturi okarakterizirana kao jedina max-stabilna Arhimedova kopula [11, 12, 24]. Slojnice zajedničke kumulativne funkcije distribucije maksimalnih godišnjih protoka koje predstavljaju zajedničko povratno razdoblje, prikazane su na slikama 4. i 5. za ušće Kupe i Une. Zajedničko povratno razdoblje izračunano pomoću kopule može poslužiti za izračun opasnosti od poplave za niz kombinacija velikih voda, uzimajući u obzir istovremeno premašenje koincidentnih protoka na riječnom paru. Na slici 4. je za ušće Kupe prikazan dijagram rasipanja parova izmjerenih maksimalnih godišnjih protoka i simuliranih parova protoka pomoću modela kopule zajedno sa slojnicama zajedničkog povratnog razdoblja maksimalnih godišnjih protoka. Vidljiv je trend gdje se vrijednost uvjetne funkcije distribucije maksimalnih godišnjih protoka prilikom povećanja na jednoj rijeci smanjuje na drugoj. Takva korelacija maksimalnih godišnjih protoka pokazuje da je vjerojatnost istovremenog prekoračenja ekstremnih protoka na obje rijeke manja od vjerojatnosti prekoračenja ekstremnog protoka na samo jednoj od rijeka Zajednička funkcija distribucije maksimalnih godišnjih protoka izračunana Gumbel- Hougaardovom kopulom Gumbel-Hougaardova kopula primjenjena je za određivanje zajedničke funkcije distribucije maksimalnih godišnjih protoka u svrhu izračuna zajedničkog povratnog razdoblja premašenja za parove protoka na razmatranim ušćima pri koincidenciji vodnih valova na glavnoj rijeci i pritoku. Za analizu su odabrani maksimalni godišnji protoci rijeke Save i pritoka iz niza mjerenja na vodomjernim postajama. Kao što je pokazano u prethodnom Slika 4. Dijagram rasipanja izmjerenih parova maksimalnih godišnjih protoka i parova protoka simuliranih iz modela kopule za ušće Kupe Na slici 5. za ušće Une prikazan je dijagram rasipanja parova izmjerenih i simuliranih protoka zajedno sa slojnicama analogan 273

8 Tablica 3. Usporedba karakterističnih protoka izračunanih univarijatnom funkcijom distribucije i kopulom Q PR [m 3 /s] Univarijatna Ušće Kupe VP Crnac Kopula Razlika [%] Univarijatna Ušće Une VP Gradiška Kopula Razlika [%] Q Q Q onom za ušće Kupe. Rezultati se znatno razlikuju od onih za ušće Kupe (slika 4). To je posljedica značajne razlike u marginalnim distribucijama protoka Save i Une, što nije slučaj na ušću Kupe gdje Sava i Kupa imaju sličan režim voda i posljedično distribucije maksimalnih godišnjih protoka. Slika 5. Dijagram rasipanja izmjerenih parova maksimalnih godišnjih protoka i parova protoka simuliranih iz modela kopule za ušće Une U tablici 3 je prikazana usporedba maksimalnih godišnjih protoka na ušćima rijeke Save, izračunanih pomoću tradicionalne univarijatne metode s onima izračunanim bivarijatnom kopulom. U tradicionalnom pristupu protok zadanog povratnog razdoblja izračunan je kao recipročna vrijednost vjerojatnosti premašenja iz kumulativne funkcije distribucije. Protok izračunan metodom kopule može biti jedna od beskonačnih kombinacija protoka glavne rijeke i pritoka duž slojnice koja predstavlja njihovo zajedničko povratno razdoblje. Za hidrološki problem opasnosti od poplava na ušću je mjerodavan ekstremni scenarij, pa su zato iz modela kopule izračunane vrijednosti najvećega zbrojenog protoka rijeke Save i njenog pritoka. Protoci izračunani metodom kopule znatno su veći od onih izračunanih univarijatnom metodom. Uzevši u obzir da do koincidencije maksimalnih protoka rijeke Save i njenih pritoka ne dolazi redovito svake godine, što se odražava na podatke snimljene na vodomjernim postajama nizvodno od ušća, ovakav je ishod očekivan. Na ušću Kupe protok izračunan modelom kopule je veći u odnosu na tradicionalnu metodu u rasponu od 33 % do 24 % za 50-godišnje povratno razdoblje, odnosno 1000-godišnje povratno razdoblje. Oblik zajedničke funkcije distribucije za ušće Kupe nalikuje nagnutoj ravnini što u konačnici rezultira linearnim povećanjem protoka u odnosu na protoke istovjetnog povratnog razdoblja izračunane tradicionalnom metodom. Na ušću Une protok izračunan modelom kopule je veći u odnosu na tradicionalnu metodu u rasponu od 50 % do 31 % za 50-godišnje povratno razdoblje, odnosno 1000-godišnje povratno razdoblje. Zajednička funkcija distribucije za ušće Une ima veću zakrivljenost nego ona za ušće Kupe, pa su razlike u protocima u odnosu na tradicionalnu metodu nelinearne. Usporedimo li maksimalni protok vodnog vala izmjeren godine s prilagođenim funkcijama distribucije [23], on je veći od očekivanog u rasponu od 25 % do 66 %, ovisno o promatranoj distribuciji. Analizom navedenog hidrološkog događaja iz na nizvodnom potezu rijeke Save kod ušća rijeke Drine, koristeći kumulativnu funkciju raspodjele dvodimenzionalne slučajne varijable, Prohaska i Ilić su zaključili da je vjerojatnost koincidencije izmjerenih protoka 2000-godišnja velika voda [25]. Usvojimo li stoga pretpostavku da je navedeni hidrološki događaj vodni val 1000-godišnjeg povratnog razdoblja na potezu rijeke Save gdje je došlo do proboja nasipa, može se tvrditi da bi se on mogao predvidjeti ako se za analizu opasnosti od poplava primjeni predloženi pristup kopula za proračun koincidencije vodnih valova na riječnim ušćima. 5. Zaključak Provedenim istraživanjem pokazano je da opasnost od poplava na rijeci Savi može biti podcijenjena ako se primjenjuje tradicionalni univarijatni pristup. Pojava katastrofalne poplave godine dodatno je potvrdila ekstremne uvjete koji nastaju u slučaju koincidencije velikih voda rijeke Save i njenih pritoka, čak i kada protok Save nije uzrokovan rijetkim događajem. U ovom radu primjenjene su mogućnosti modela kopule za modeliranje hidroloških varijabli u bivarijatnoj analizi učestalosti velikih voda. Za analizu je korištena Gumbel- Hougaardova kopula na parovima maksimalnih godišnjih protoka rijeke Save i njenih pritoka. Rezultati pokazuju da su protoci izračunani metodom kopule znatno veći od onih izračunanih tradicionalnom univarijatnom metodom. Uzevši u obzir da do koincidencije maksimalnih protoka rijeke Save i njenih pritoka ne dolazi redovito svake godine, što se odražava na podatke snimljene na vodomjernim postajama 274

9 Analiza zajedničke vjerojatnosti pojave velikih voda na ušćima primjenom bivarijatnih kopula nizvodno od ušća, takav je ishod očekivan. Rezultati pokazuju da u usporedbi s mjerenim podacima, predloženi pristup metode kopule daje točniju procjenu poplavnog događaja od tradicionalne univarijatne metode. Stoga se može tvrditi kako se protok vodnog vala godine mogao predvidjeti da se je za analizu opasnosti od poplava primijenio predloženi pristup kopula za proračun koincidencije vodnih valova na riječnim ušćima. Bivarijatni model kopule se može uspješno primijeniti na riječnim dionicama gdje je prisutna znatna neujednačenost u režimu voda, ili gdje na intenzitet vodnog vala utječe više varijabli kao što je slučaj na riječnim ušćima. Na ušćima marginalne distribucije protoka dviju rijeka rijetko prate sličnu distribuciju, što čini model kopule posebno korisnim za procjenu opasnosti od poplava. LITERATURA [1] Gräler, B., van den Berg, M. J., Vandenberghe, S., et al.: Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation, Hydrol. Earth Syst. Sci, 17 (2013), pp , https: /doi.org/ /hess [2] Volpi, E., Fiori, A.: Design event selection in bivariate hydrological frequency analysis, Hydrological Sciences Journal - Journal des Sciences Hydrologiques, 57 (2012) 8, pp [3] Wang, C.: A joint probability approach for the confluence flood frequency analysis, Iowa State University, [4] Yue, S., Rasmussen P.: Bivariate frequency analysis: discussion of some useful concepts in hydrological application, Hydrological Processes, 16 (2002), pp , https: /doi.org/ / hyp.1185 [5] Xu, C., Yin, J., Guo, S., Liu, Z., Hong, X.: Deriving Design Flood Hydrograph Based on Conditional Distribution: A Case Study of Danjiangkou Reservoir in Hanjiang Basin, Mathematical Problems in Engineering, (2016), Article ID , 16 pages. [6] Klein, B., Pahlow M., Hundecha, Y., Schumann, A.: Probability Analysis of Hydrological Loads for the Design of Flood Control Systems Using Copulas, Journal of Hydrologic Engineering, 15 (2010) 5, pp [7] Papaioannou, G., Kohnová, S., Bacigál, T., Szolgay, J., Hlavčová, K., Loukas, A.: Joint modelling of flood peaks and volumes: A copula application for the Danube River, J. Hydrol. Hydromech, 64 (2016) 4, pp [8] Requena, A. I., Mediero, L., Garrote, L.: A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation, Hydrol. Earth Syst. Sci., 17 (2013), pp , https: /doi.org/ /hess [9] Ilić, A., Prohaska, S.: Multiple Coincedence of Flood Waves in Complex River Systems, Water & Environmental Dynamics - 6th International Conference on Water Resources and Environment Research, Koblenz, Germany, pp , [10] Dung, N. V., Merz, B., Bárdossy, A., Apel H.: Handling uncertainty in bivariate quantile estimation - An application to flood hazard analysis in the Mekong Delta, Journal of Hydrology, 527 (2015), pp , https: /doi.org/ /j.jhydrol [11] Ribatet, M., Sedki, M.: Extreme value copulas and max-stable processes, Journal of Société Française de Statistique (special edition on copulas), 153 (2012) 3, pp [12] Fan, Y. R., Huang, W. W., Huang, G. H., Li Y. P., Huang, K., Li Z.: Hydrologic risk analysis in the Yangtze River basin through coupling Gaussian mixtures into copulas, Advances in Water Resources, 88 (2016), pp , https: /doi.org/ /j. advwatres [13] Volpi, E., Fiori, A.: Hydraulic structures subject to bivariate hydrological loads: Return period, design, and risk assessment, Water Resources Research, 50 (2014), pp , https: /doi. org/ /2013wr [14] Bender, J., Wahl, T., Mudersbach, C., Jensen, J.: Flood Frequency Analysis at River Confluences - Univariate vs. Multivariate Extreme Value Statistics, Water & Environmental Dynamics - 6th International Conference on Water Resources and Environment Research, Koblenz, Germany, pp , [15] Bender, J., Wahl, T., Müller, A., Jensen, J.: A multivariate design framework for river confluences, Hydrological Sciences Journal - Journal des Sciences Hydrologiques, 61 (2016) 3, pp [16] Szolgay, J., Gaál, L., Bacigál, T., et al.: A regional comparative analysis of empirical and theoretical flood peak-volume relationships, Journal of hydrology and hydromechanics, 64 (2016) 4, pp [17] Sraj, M., Bezak, N., Brilly, M.: Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River, Hydrol. Process., 29, pp , 2015, https: /doi. org/ /hyp [18] Ozga-Zielinski, B., Ciupak, M., Adamowski, J., Khalil, B., Malard, J.: Snow-melt flood frequency analysis by means of copula based 2D probability distributions for the Narew River in Poland, Journal of Hydrology: Regional Studies, 6 (2016), pp , https: /doi. org/ /j.ejrh [19] Li, T., Guo, S., Liu, Z., Xiong, L., Yin, J.: Bivariate design flood quantile selection using copulas, Hydrology Research, (2016), Article ID nh , 17 pages. [20] Čanjevac, I.: Tipologija protočnih režima rijeka u Hrvatskoj, Hrvatski geografski glasnik, 75 (2013) 1, pp [21] Korjenić, A.: Basic characteristics water regime and water balance of the river Una, Acta geographica Bosniae et Herzegovinae, 2 (2014), pp [22] ISRBC: Sava River Basin Analysis Summary, International Sava River Basin Commission, Zagreb, Croatia, [23] Abdulaj, R., Miković, N., Oskoruš, D., Vujnović, T.: Velike vode donjeg toka rijeke Save tijekom svibnja 2014., Hrvatska vodoprivreda, 207 (2014), pp [24] Klein, B., Pahlow, M., Gattke, C., Hundecha, Y., Schumann, A.: Probabilistic analysis of hydrological loads to optimize the design of flood control systems, 4 th International Symposium on Flood Defence: Managing Flood Risk, Reliability and Vulnerability, Toronto, Canada, [25] Prohaska, S., Ilić, A.: Koincidencija velikih voda Save i Drine, Hrvatske vode, 24 (2016) 95, pp

Slide 1

Slide 1 IDENTIFIKACIJA POKRETAČA POPLAVA U GRADU ZAGREBU ANALIZA OBORINSKIH DOGAĐAJA 2013. i 2014. GODINE Diplomski rad Autor: Matija Hrastovski, mag. ing. geol. Mentor: Izv. prof.dr.sc. Snježana Mihalić Arbanas

Више

Microsoft Word - V03-Prelijevanje.doc

Microsoft Word - V03-Prelijevanje.doc Praktikum iz hidraulike Str. 3-1 III vježba Prelijevanje preko širokog praga i preljeva praktičnog profila Mali stakleni žlijeb je izrađen za potrebe mjerenja pojedinih hidrauličkih parametara tečenja

Више

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca

Више

IZVJEŠĆE O PRAĆENJU KVALITETE ZRAKA NA POSTAJI SLAVONSKI BROD U PERIODU OD 01

IZVJEŠĆE O PRAĆENJU KVALITETE ZRAKA NA POSTAJI SLAVONSKI BROD U PERIODU OD 01 REPUBLIKA HRVATSKA DRŽAVNI HIDROMETEOROLOŠKI ZAVOD SEKTOR ZA KVALITETU ZRAKA PRELIMINARNO IZVJEŠĆE O PRAĆENJU KVALITETE ZRAKA NA POSTAJI SLAVONSKI BROD U PERIODU OD 1.1.-.3.13. GODINE Izrađeno za: Ministarstvo

Више

Postojanost boja

Postojanost boja Korištenje distribucije osvjetljenja za ostvaranje brzih i točnih metode za postojanost boja Nikola Banić 26. rujna 2014. Sadržaj Postojanost boja Ubrzavanje lokalnog podešavanja boja Distribucija najčešćih

Више

ZBORNIK BOOK TISAK 15 OK TISAK SLANJE.indb

ZBORNIK BOOK TISAK 15 OK TISAK SLANJE.indb 7. HRVATSKA KONFERENCIJA O VODAMA OPATIJA 30. SVIBNJA - 1. LIPNJA 2019. R 2.12. MORFODINAMIČKE ANALIZE VARIJANTNIH RJEŠENJA UREĐENJA UŠĆA RIJEKE DRAVE Gordon Gilja, Dora Jelić, Neven Kuspilić SAŽETAK:

Више

Istraživanje kvalitete zraka Slavonski Brod: Izvještaj 3 – usporedba podataka hitnih medicinskih intervencija za godine i

Istraživanje kvalitete zraka Slavonski Brod: Izvještaj 3 – usporedba podataka hitnih medicinskih intervencija za godine i Služba za medicinsku informatiku i biostatistiku Istraživanje kvalitete zraka Slavonski Brod: Izvještaj 3 usporedba podataka hitnih medicinskih intervencija za 1.1.-31.8.2016. godine i 1.1.-31.8.2017.

Више

46th Croatian & 6th International Symposium on Agriculture

46th Croatian & 6th International Symposium on Agriculture IZVORNI ZNANSTVENI RAD Smanjenje prinosa poljoprivrednih kultura u uvjetima bez navodnjavanja na području sjeveroistočne Bosne Univerzitet u Sarajevu, Poljoprivredno-prehrambeni fakultet, Zmaja od Bosne

Више

Microsoft Word - os_preko_susa_2011

Microsoft Word - os_preko_susa_2011 SUŠA 2011.g. UČENICE: Ema Sorić, Doris Blaslov, Mare Vidaković ŠKOLA: OŠ Valentin Klarin Preko MENTOR : Jasminka Dubravica jdubravi@gmail.com 023/492-498 OŠ VALENTIN KLARIN PREKO Istraživačko pitanje/hipoteza:

Више

Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 24 uzoraka seruma (µmol/l):

Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 24 uzoraka seruma (µmol/l): Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 4 uzoraka seruma (µmol/l): 1.8 13.8 15.9 14.7 13.7 14.7 13.5 1.4 13 14.4 15 13.1 13. 15.1 13.3 14.4 1.4 15.3 13.4 15.7 15.1 14.5

Више

Stručno usavršavanje

Stručno usavršavanje TOPLINSKI MOSTOVI IZRAČUN PO HRN EN ISO 14683 U organizaciji: TEHNIČKI PROPIS O RACIONALNOJ UPORABI ENERGIJE I TOPLINSKOJ ZAŠTITI U ZGRADAMA (NN 128/15, 70/18, 73/18, 86/18) dalje skraćeno TP Čl. 4. 39.

Више

I

I DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA Naziv predmeta Studijski program Godina 2 Status predmeta Web stranica predmeta Mogućnost izvođenja nastave na engleskom jeziku Bodovna vrijednost i način izvođenja

Више

I

I DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA Naziv predmeta Studijski program Godina 2 Status predmeta Web stranica predmeta Mogućnost izvođenja nastave na engleskom jeziku Bodovna vrijednost i način izvođenja

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

Pozivnica Za sudjelovanje na lokalnoj radionici u okviru SEE River projekta Datum radionice: Mjesto održavanja: Hlebine, Društveni dom,

Pozivnica Za sudjelovanje na lokalnoj radionici u okviru SEE River projekta Datum radionice: Mjesto održavanja: Hlebine, Društveni dom, Pozivnica Za sudjelovanje na lokalnoj radionici u okviru SEE River projekta Datum radionice: 06. 03. 2014. Mjesto održavanja: Hlebine, Društveni dom, Trg Ivana Generalića 15, Hlebine Poštovana/Poštovani,

Више

CVRSTOCA

CVRSTOCA ČVRSTOĆA 12 TEORIJE ČVRSTOĆE NAPREGNUTO STANJE Pri analizi unutarnjih sila koje se pojavljuju u kosom presjeku štapa opterećenog na vlak ili tlak, pri jednoosnom napregnutom stanju, u tim presjecima istodobno

Више

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove

Више

Načelnik Općine Cestica zahvalio Stričaku i Križaniću na projektu izgradnje nasipa vrijednom 26 milijuna kuna U sjedištu Vodnogospodarskog o

Načelnik Općine Cestica zahvalio Stričaku i Križaniću na projektu izgradnje nasipa vrijednom 26 milijuna kuna U sjedištu Vodnogospodarskog o Načelnik Općine Cestica zahvalio Stričaku i Križaniću na projektu izgradnje nasipa vrijednom 26 milijuna kuna 2.4.2019. U sjedištu Vodnogospodarskog odjela za Muru i gornju Dravu Hrvatskih voda u Varaždinu

Више

Microsoft PowerPoint - Ispitivanje povezanosti Regresija redovni decembar 2007 [Compatibility Mode]

Microsoft PowerPoint - Ispitivanje povezanosti Regresija redovni decembar 2007 [Compatibility Mode] Ispitivanje povezanosti Jelena Marinkovi Institut za medicinsku statistiku i informatiku Medicinskog fakulteta Beograd, decembar 2007.g. Kakav je odnos DOZA-EFEKAT (ODGOVOR)? Log Doza vs Odgovor 150 y-osa

Више

07jeli.DVI

07jeli.DVI Osječki matematički list 1(1), 85 94 85 Primjena karakterističnih funkcija u statistici Slobodan Jelić Sažetak. U ovom radu odred ene su funkcije distribucije aritmetičke sredine slučajnog uzorka duljine

Више

UDK: ELIMINACIJA MALIH I ZAVISNIH EPIZODA PRI IDENTIFIKACIJI DEFICITA DNEVNIH PROTOKA PO METODI KORAKA Vladislava Mihailović 1 Borislava Blag

UDK: ELIMINACIJA MALIH I ZAVISNIH EPIZODA PRI IDENTIFIKACIJI DEFICITA DNEVNIH PROTOKA PO METODI KORAKA Vladislava Mihailović 1 Borislava Blag UDK:551.515.9 ELIMINACIJA MALIH I ZAVISNIH EPIZODA PRI IDENTIFIKACIJI DEFICITA DNEVNIH PROTOKA PO METODI KORAKA Vladislava Mihailović 1 Borislava Blagojević 2 Vesna Đukić 3 Rezime U ovom radu je demonstrirana

Више

Microsoft PowerPoint - Basic_SIREN_Basic_H.pptx

Microsoft PowerPoint - Basic_SIREN_Basic_H.pptx Smart Integration of RENewables Regulacija frekvencije korištenjem mikromreža sa spremnicima energije i odzivom potrošnje Hrvoje Bašić Završna diseminacija projekta SIREN FER, 30. studenog 2018. Sadržaj

Више

Slide 1

Slide 1 Statistička analiza u hidrologiji Uvod Statistička analiza se primenjuje na podatke osmatranja hidroloških veličina (najčešće: protoka i kiša) Cilj: opisivanje veze između veličine i verovatnoće njene

Више

Smjernice o mjerama za ograničavanje procikličnosti iznosa nadoknade za središnje druge ugovorne strane prema EMIR-u 15/04/2019 ESMA HR

Smjernice o mjerama za ograničavanje procikličnosti iznosa nadoknade za središnje druge ugovorne strane prema EMIR-u 15/04/2019 ESMA HR Smjernice o mjerama za ograničavanje procikličnosti iznosa nadoknade za središnje druge ugovorne strane prema EMIR-u 15/04/2019 ESMA70-151-1496 HR Sadržaj I. Područje primjene... 2 II. Zakonodavni referentni

Више

I

I DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA Naziv predmeta Studijski program Godina 3 Status predmeta Web stranica predmeta/mudri Mogućnost izvođenja nastave na engleskom jeziku Bodovna vrijednost i način

Више

ЈВП "Београдводе"

ЈВП Београдводе ЈВП "БЕОГРАДВОДЕ" БЕОГРАД Број: 30/17 Дана: 08.02.2017. Б И Л Т Е Н бр. 30 О СПРОВОЂЕЊУ ОДБРАНЕ ОД ПОПЛАВА 08.02.2017. године ЈВП "Београдводе" - Београд I НАРЕДБЕ 1. Дана 10.01.2017. у 07,00 часова, Руководилац

Више

Uvod u statistiku

Uvod u statistiku Uvod u statistiku Osnovni pojmovi Statistika nauka o podacima Uključuje prikupljanje, klasifikaciju, prikaz, obradu i interpretaciju podataka Staistička jedinica objekat kome se mjeri neko svojstvo. Svi

Више

Metode psihologije

Metode psihologije Metode psihologije opažanje, samoopažanje, korelacijska metoda, eksperiment Metode služe za istraživanja... Bez znanstvenih istraživanja i znanstvene potvrde, spoznaje i objašnjenja ne mogu postati dio

Више

Raspodjela i prikaz podataka

Raspodjela i prikaz podataka Kolegij: ROLP Statistička terminologija I. - raspodjela i prikaz podataka 017. Neki temeljni statistički postupci u znanstvenom istraživanju odabir uzorka prikupljanje podataka određivanje mjerne ljestvice

Више

Microsoft Word - 1Tekst.doc

Microsoft Word - 1Tekst.doc BOSNA I HERCEGOVINA Federacija Bosne i Hercegovine HIDROLOŠKI GODIŠNJAK 24 Federalni hidrometeorološki zavod Javno preduzeće za Vodno područje slivova rijeke Save Javno poduzeće za Vodno područje slivova

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

ZBORNIK BOOK TISAK 15 OK TISAK SLANJE.indb

ZBORNIK BOOK TISAK 15 OK TISAK SLANJE.indb 7. HRVATSKA KONFERENCIJA O VODAMA S MEĐUNARODNIM SUDJELOVANJEM HRVATSKE VODE U ZAŠTITI OKOLIŠA I PRIRODE 7 th CROATIAN WATER CONFERENCE WITH INTERNATIONAL PARTICIPATION CROATIAN WATERS IN ENVIRONMENTAL

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

Slide 1

Slide 1 EU sufinanciran projekt 7th Meeting of the Committee for monitoring and coordination of implementation of the Project Rehabilitation and Development of Transport and Navigation on the Sava River Waterway

Више

Microsoft PowerPoint - Jaroslav Cerni ppt

Microsoft PowerPoint - Jaroslav Cerni ppt Институт за водопривреду Јарослав Черни АД Институт за водопривреду Јарослав Черни, основан 1947. године, водећа је научноистраживачка организација у Србији у области вода. ДЕЛАТНОСТИ Теоријска и примењена

Више

I

I DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA Naziv predmeta Studijski program Godina 3 Status predmeta Web stranica predmeta/mudri Mogućnost izvođenja nastave na engleskom jeziku Bodovna vrijednost i način

Више

Процена максималних вредности годишње температуре ваздуха у Бањалуци

Процена максималних вредности годишње температуре ваздуха у Бањалуци Процена екстремних годишњих температура у Бањалуци, Сарајеву и Мостару Највиша дневна температура ваздуха у Бањалуци, Мостару и Сарајеву за период 1960-2011 је приказана у сљедећој табели 1: Табела бр.

Више

NACRT HRVATSKE NORME nhrn EN :2008/NA ICS: ; Prvo izdanje, veljača Eurokod 3: Projektiranje čeličnih konstrukcija Dio

NACRT HRVATSKE NORME nhrn EN :2008/NA ICS: ; Prvo izdanje, veljača Eurokod 3: Projektiranje čeličnih konstrukcija Dio NACRT HRVATSKE NORME nhrn EN 1993-4-1:2008/NA ICS: 91.010.30; 91.080.30 Prvo izdanje, veljača 2013. Eurokod 3: Projektiranje čeličnih konstrukcija Dio 4-1: Silosi Nacionalni dodatak Eurocode 3: Design

Више

Slide 1

Slide 1 Merni sistemi u računarstvu, http://automatika.etf.rs/sr/13e053msr Merna nesigurnost tipa A doc. dr Nadica Miljković, kabinet 68, nadica.miljkovic@etf.rs Prezentacija za ovo predavanje je skoro u potpunosti

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

Toplinska i električna vodljivost metala

Toplinska i električna vodljivost metala Električna vodljivost metala Cilj vježbe Određivanje koeficijenta električne vodljivosti bakra i aluminija U-I metodom. Teorijski dio Eksperimentalno je utvrđeno da otpor ne-ohmskog vodiča raste s porastom

Више

ЈВП "Београдводе"

ЈВП Београдводе ЈВП "БЕОГРАДВОДЕ" БЕОГРАД Број: 1/17 Дана: 11.01.2017. Б И Л Т Е Н бр. 1 О СПРОВОЂЕЊУ ОДБРАНЕ ОД ПОПЛАВА 11.01.2017. године ЈВП "Београдводе" - Београд I НАРЕДБЕ 1. Дана 10.01.2017. у 07,00 часова, Руководилац

Више

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka) . B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji

Више

4

4 4.1.2 Eksperimentalni rezultati Rezultati eksperimentalnog istraživanja obrađeni su u programu za digitalno uređivanje audio zapisa (Coll Edit). To je program koji omogućava široku obradu audio zapisa.

Више

MAZALICA DUŠKA.pdf

MAZALICA DUŠKA.pdf SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ELEKTROTEHNIČKI FAKULTET Sveučilišni studij OPTIMIRANJE INTEGRACIJE MALIH ELEKTRANA U DISTRIBUCIJSKU MREŽU Diplomski rad Duška Mazalica Osijek, 2014. SADRŽAJ

Више

Microsoft Word - CAD sistemi

Microsoft Word - CAD sistemi U opštem slučaju, se mogu podeliti na 2D i 3D. 2D Prvo pojavljivanje 2D CAD sistema se dogodilo pre više od 30 godina. Do tada su inženjeri koristili table za crtanje (kulman), a zajednički jezik komuniciranja

Више

VELEUČILIŠTE VELIKA GORICA REZULTATI STUDENTSKE ANKETE PROVEDENE NA VELEUČILIŠTU VELIKA GORICA ZA ZIMSKI SEMESTAR AKADEMSKE 2013/2014 GODINE 1. Uvod E

VELEUČILIŠTE VELIKA GORICA REZULTATI STUDENTSKE ANKETE PROVEDENE NA VELEUČILIŠTU VELIKA GORICA ZA ZIMSKI SEMESTAR AKADEMSKE 2013/2014 GODINE 1. Uvod E REZULTATI STUDENTSKE ANKETE PROVEDENE NA VELEUČILIŠTU VELIKA GORICA ZA ZIMSKI SEMESTAR AKADEMSKE 2013/2014 GODINE 1. Uvod Evaluacijska anketa nastavnika i nastavnih predmeta provedena je putem interneta.

Више

Microsoft Word - R38-01.doc

Microsoft Word - R38-01.doc HRVATSKI KOMITET MEĐUNARODNOG VIJEĆA ZA VELIKE ELEKTRIČNE SISTEME, ZAGREB, Berislavićeva 6 PETO SAVJETOVANJE CAVTAT, 4. - 8. studenoga 1. Mr. sc. Ranko Goić, dipl. ing. Fakultet elektrotehnike, strojarstva

Више

Microsoft PowerPoint - Bazdaric_vrste istrazivanja 2014_ pptx [Read-Only]

Microsoft PowerPoint - Bazdaric_vrste istrazivanja 2014_ pptx [Read-Only] Sveučilišni diplomski studij medicinsko-laboratorijske dijagnostike Kolegij: Medicinska informatika u kliničko-laboratorijskoj dijagnostici (MIKLD 2014./15.) Vrste istraživanja Biomedicinska istraživanja

Више

Diferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod

Diferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod 1 math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod znakom integrala analiza Irfan Glogić, Harun Šiljak When guys at MIT or Princeton had trouble doing a certain integral,

Више

ЈВП "Београдводе"

ЈВП Београдводе ЈВП "БЕОГРАДВОДЕ" БЕОГРАД Број: 29/17 Дана: 07.02.2017. Б И Л Т Е Н бр. 29 О СПРОВОЂЕЊУ ОДБРАНЕ ОД ПОПЛАВА 07.02.2017. године ЈВП "Београдводе" - Београд I НАРЕДБЕ 1. Дана 10.01.2017. у 07,00 часова, Руководилац

Више

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6

Више

1

1 Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N

Више

FTN Novi Sad Katedra za motore i vozila Potrošnja goriva Teorija kretanja drumskih vozila Potrošnja goriva

FTN Novi Sad Katedra za motore i vozila Potrošnja goriva Teorija kretanja drumskih vozila Potrošnja goriva Ključni faktori: 1. ENERGIJA potrebna za kretanje vozila na određenoj deonici puta Povećanje E K pri ubrzavanju, pri penjanju, kompenzacija energetskih gubitaka usled dejstva F f i F W Zavisi od parametara

Више

Elementarna matematika 1 - Oblici matematickog mišljenja

Elementarna matematika 1 - Oblici matematickog mišljenja Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s

Више

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi 3. siječnja 0. od 3:00 do 4:00 RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovitelji Sadržaj Zadaci. 4.... Zadaci 5. 0.... 3 od 8 Zadaci. 4. U sljedećim pitanjima na pitanja odgovaraš upisivanjem

Више

Microsoft Word - analiza_jesen_20131_KSC-KM.doc

Microsoft Word - analiza_jesen_20131_KSC-KM.doc Analiza jeseni 13. godine po tipovima vremena Dunja Plačko Vršnak, Marija Mokorić i Krunoslav Mikec Uvod Jesenski mjeseci (rujan, listopad i studeni) bili su razmjerno topli, a osobito je u listopadu bilo

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

Microsoft PowerPoint - 06__Balenovic_2017_3D-FORINVENT-1st-Workshop-JASKA.pptx

Microsoft PowerPoint - 06__Balenovic_2017_3D-FORINVENT-1st-Workshop-JASKA.pptx Prezentacija projekta HRVATSKI 3D-FORINVENT ŠUMARSKI INSTITUT CROATIAN FOREST RESEARCH INSTITUTE 1. Radionica 3D-FORINVENT Prezentacija projekta 1 st Workshop 3D-FORINVENT Project Presentation Uporaba

Више

UDŽBENIK 2. dio

UDŽBENIK 2. dio UDŽBENIK 2. dio Pročitaj pažljivo Primjer 1. i Primjer 2. Ova dva primjera bi te trebala uvjeriti u potrebu za uvo - denjem još jedne vrste brojeva. Primjer 1. Živa u termometru pokazivala je temperaturu

Више

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru

Више

FINANCIJSKI REZULTATI ZA GODINU Kontakt: INA-Industrija nafte, d.d. Sektor korporativnih komunikacija Avenija Većeslava Holjevca 10, Zagreb Služ

FINANCIJSKI REZULTATI ZA GODINU Kontakt: INA-Industrija nafte, d.d. Sektor korporativnih komunikacija Avenija Većeslava Holjevca 10, Zagreb Služ FINANCIJSKI REZULTATI ZA 2016. GODINU Kontakt: INA-Industrija nafte, d.d. Sektor korporativnih komunikacija, Zagreb Služba za odnose s javnošću E-mail: PR@ina.hr Press centar na www.ina.hr 1 INA u 2016.

Више

Upravljanje rizicima od katastrofa

Upravljanje rizicima od katastrofa Državna uprava za zaštitu i spašavanje Sektor za civilnu zaštitu Upravljanje rizicima od katastrofa Preduvjet održivog razvoja Strategija prilagodbe klimatskim promjenama - Upravljanje rizicima 22. veljače

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3 Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b

Више

Microsoft PowerPoint - Hidrologija 4 cas

Microsoft PowerPoint - Hidrologija 4 cas HIDROMETRIJA Definicija Nauka o metodama i tehnici merenja različitih karakteristika vezanih za vodu u svim njenim vidovima pojavljivanja na zemlji Etimologija starogrčke reči Hidro voda Metria merenje

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

Slide 1

Slide 1 KONCEPT MARKIRANJA (FLAGGING) DRAGAN MUČIĆ, IRENA ŠAGOVAC, ANA TOMASOVIĆ TEKLIĆ Mjerenje parametara električne energije - obračunska mjerenja - mjerenja tokova snaga - mjerenja u svrhu detektiranja i otklanjanja

Више

RAZVOJ METODA ZA UREĐENJE TERITORIJE I UPRAVLJENJE VODAMA U

RAZVOJ METODA ZA UREĐENJE TERITORIJE I UPRAVLJENJE VODAMA U UDK: 627.51 Pregledni rad MAPE OPASNOSTI I MAPE RIZIKA OD POPLAVA NA SLIVU RIJEKE VRBAS U BiH KAO PODLOGA ZA IZRADU PLANOVA UPRAVLJANJA POPLAVNIM RIZIKOM Vujadin BLAGOJEVIĆ, Nedeljko SUDAR 1), Žana TOPALOVIĆ

Више

Interpretacija čuda pomoću teorije determinističkog kaosa (Jerko Kolovrat, KBF Split; Marija Todorić, PMF Zagreb) Postoje razne teme koje zaokupljaju

Interpretacija čuda pomoću teorije determinističkog kaosa (Jerko Kolovrat, KBF Split; Marija Todorić, PMF Zagreb) Postoje razne teme koje zaokupljaju Interpretacija čuda pomoću teorije determinističkog kaosa (Jerko Kolovrat, KBF Split; Marija Todorić, PMF Zagreb) Postoje razne teme koje zaokupljaju ljudski um i tjeraju ga da prema njima zauzme stav

Више

ЈВП "Београдводе"

ЈВП Београдводе ЈВП "БЕОГРАДВОДЕ" БЕОГРАД Број: 11/17 Дана: 20.01.2017. Б И Л Т Е Н бр. 11 О СПРОВОЂЕЊУ ОДБРАНЕ ОД ПОПЛАВА 20.01.2017. године ЈВП "Београдводе" - Београд I НАРЕДБЕ 1. Дана 10.01.2017. у 07,00 часова, Руководилац

Више

Microsoft PowerPoint - gaf nis kartiranje rizika od poplava.ppt

Microsoft PowerPoint - gaf  nis kartiranje rizika od poplava.ppt Дипломски рад + рад на пракси у ЈВП Србијаводе Ниш = основа за Мастер рад Тема: Картирање ризика од поплава Студент : Јелица Ђурђановић МРГ 28/2009 Скуп студената хидротехнике Београд, 16. 12. 2011.год.

Више

Seminar Novi zakonodavni okvir za elektroenergetski sektor

Seminar Novi zakonodavni okvir za elektroenergetski sektor Seminar TRŽIŠTE ELEKTRIČNE ENERGIJE NA RAZINI DISTRIBUCIJSKOG SUSTAVA ULOGA OPERATORA DISTRIBUCIJSKOG SUSTAVA NA TRŽIŠTU ELEKTRIČNE ENERGIJE, mag.ing.el. HEP-Operator distribucijskog sustava d.o.o. Zagreb,

Више

(Microsoft Word - Rje\232enja zadataka)

(Microsoft Word - Rje\232enja zadataka) 1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:

Више

STABILNOST SISTEMA

STABILNOST SISTEMA STABILNOST SISTEMA Najvaznija osobina sistema automatskog upravljanja je stabilnost. Generalni zahtev koji se postavlja pred projektanta jeste da projektovani i realizovani sistem automatskog upravljanja

Више

35-Kolic.indd

35-Kolic.indd Sandra Kolić Zlatko Šafarić Davorin Babić ANALIZA OPTEREĆENJA VJEŽBANJA TIJEKOM PROVEDBE RAZLIČITIH SADRŽAJA U ZAVRŠNOM DIJELU SATA 1. UVOD I PROBLEM Nastava tjelesne i zdravstvene kulture važan je čimbenik

Више

Sos.indd

Sos.indd STRUČNI RADOVI IZVAN TEME Krešimir Šoš Vlatko Vučetić Romeo Jozak PRIMJENA SUSTAVA ZA PRAĆENJE SRČANE FREKVENCIJE U NOGOMETU 1. UVOD Nogometna igra za igrača predstavlja svojevrsno opterećenje u fiziološkom

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske optike (lom i refleksija svjetlosti). Određivanje žarišne daljine tanke leće Besselovom metodom. Teorijski dio Zrcala i leće su objekti

Више

IRL201_STAR_sylab_ 2018_19

IRL201_STAR_sylab_ 2018_19 Detaljni izvedbeni nastavni plan za kolegij: Statistika i analiza znanstvenih podataka Akademska godina: 2018/2019 Studij: Diplomski sveučilišni studiji: Biotehnologija u medicini, Istraživanje i razvoj

Више

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robotika Zagreb, 2014. MODEL PROCESA U PROSTORU STANJA

Више

Microsoft Word - zadaci_21.doc

Microsoft Word - zadaci_21.doc 1. Devalvacija predstavlja: a) porast Ē b) smanjenje Ē c) porast P d) smanjenje realnog deviznog tečaja 2. Revalvacija predstavlja: a) porast Ē b) smanjenje P c) porast P* d) ništa od navedenog 3. AD krivulja

Више

Memorandum - Predsjednik

Memorandum - Predsjednik KLASA: UP/I-344-01/15-03/03 URBROJ: 376-11-15-13 Zagreb, 9. srpnja 2015. Na temelju članka 12. stavka 1. točke 3. i članka 52. Zakona o elektroničkim komunikacijama (NN br. 73/08, 90/11, 133/12, 80/13

Више

ЈВП "Београдводе"

ЈВП Београдводе ЈВП "БЕОГРАДВОДЕ" БЕОГРАД Број: 14/17 Дана: 23.01.2017. Б И Л Т Е Н бр. 14 О СПРОВОЂЕЊУ ОДБРАНЕ ОД ПОПЛАВА 23.01.2017. године ЈВП "Београдводе" - Београд I НАРЕДБЕ 1. Дана 10.01.2017. у 07,00 часова, Руководилац

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

Mere slicnosti

Mere slicnosti Nenad Mitić Matematički fakultet nenad@matf.bg.ac.rs Kako odrediti sličnost/različitost, obrazaca, atributa, dogadjaja... Podaci različitog tipa i strukture Zavisnost od tipa, raspodele, dimenzionalnosti

Више

Microsoft Word - ANALIZA PROGNOZA TOPLINSKIH VALOVA U 2012.doc

Microsoft Word - ANALIZA PROGNOZA TOPLINSKIH VALOVA U 2012.doc PRELIMINARNA ANALIZA UPOZORENJA NA OPASNOST OD TOPLINSKOG VALA U. godini Zoran Vakula Analizirala su se upozorenja na opasnost od toplinskog vala u sljedeća dana (za sutra i još 3 dana), za gradova/područja

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r Sveučilište J.J. Strossmayera Fizika 2 Predložak za laboratorijske vježbe Cilj vježbe Određivanje relativne permitivnosti stakla, plastike, papira i zraka mjerenjem kapaciteta pločastog kondenzatora U-I

Више

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil

Више

OBRAZAC 1. Vrednovanje sveucilišnih studijskih programa preddiplomskih, diplomskih i integriranih preddiplomskih i diplomskih studija te strucnih stud

OBRAZAC 1. Vrednovanje sveucilišnih studijskih programa preddiplomskih, diplomskih i integriranih preddiplomskih i diplomskih studija te strucnih stud OBRAZAC 1. Vrednovanje sveucilišnih studijskih programa preddiplomskih, diplomskih i integriranih preddiplomskih i diplomskih studija te strucnih studija Tablica 2: Opis predmeta 1. OPĆE INFORMACIJE 1.1.

Више

Sample presentation slides (White with blue grid design)

Sample presentation slides (White with blue grid design) Заштита Београда од великих вода Дунава и Саве Х Прпф. др Мипдраг Јпванпвић Прпф. др Маркп Иветић Дпц. др Никпла Рпсић Грађевински факултет Универзитета у Бепграду Мај, 2017. Садржај 1. Увпд - циљ хидрауличких

Више

hrvatski zavod za zapošljavanje Godina XV. broj 4 Zagreb 2013.

hrvatski zavod za zapošljavanje Godina XV. broj 4 Zagreb 2013. hrvatski zavod za zapošljavanje Godina XV. broj 4 Zagreb 2013. Nakladnik: hrvatski zavod za zapošljavanje Radnička cesta 1, Zagreb Telefon - centrala: (01) 612 60 00 Telefon - uredništvo: (01) 612 60 90

Више

Microsoft Word - clanakGatinVukcevicJasak.doc

Microsoft Word - clanakGatinVukcevicJasak.doc Šesti susret Hrvatskoga društva za mehaniku Rijeka, 29-30. svibnja 2014. PRIMJENA NAVAL HYDRO PAKETA ZA PRORAČUN VALNIH OPTEREĆENJA Gatin, I., Vukčević, V. & Jasak, H. Sažetak: Ovaj rad prikazuje mogućnosti

Више

Slide 1

Slide 1 Ovaj projekt financira EUROPSKA UNIJA IPA Komponenta IV - Razvoj ljudskih potencijala - Program Europske Unije za Hrvatsku Partner u projektu Samovrednovanje u srednjim strukovnim školama u Republici Hrvatskoj

Више

РЕПУБЛИКА СРПСКА ЈАНУАРА 2019

РЕПУБЛИКА СРПСКА ЈАНУАРА 2019 Опсег нормале јануарске количине падавина 1981-2010 (горе); средња количина 1981-2010* лијево доље, Јан-2019 десно доље *Попуна недостајућих података 1991-1995/1996 референтног периода 1981-2010 извршена

Више

Algoritmi SŠ P1

Algoritmi SŠ P1 Županijsko natjecanje iz informatike Srednja škola 9. veljače 2018. RJEŠENJA ZADATAKA Napomena: kodovi za većinu opisanih algoritama dani su u Pythonu radi jednostavnosti i lakše čitljivosti. Zbog prirode

Више

6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA

6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH  VODOVA SIGURNOST U PRIMJENI ELEKTRIČNE ENERGIJE 6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA Izv.prof. dr.sc. Vitomir Komen, dipl.ing.el. 1/14 SADRŽAJ: 6.1 Sigurnosni razmaci i sigurnosne

Више

TD 95:0221

TD 95:0221 NARUČITELJ: TEDRA d.o.o.- u stečaju Biševska 13 10000 ZAGREB OIB: 25332961433 PREDMET: ELABORAT NALAZA I MIŠLJENJA IZRADIO: "Vještačenja CIRAKI" d.o.o. za vještačenja i usluge Zagreb, Ilica 174 ZAGREB,

Више

Microsoft Word - 12ms121

Microsoft Word - 12ms121 Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +

Више

INSTITUT ZA MEDICINSKA ISTRAŽIVANJA I MEDICINU RADA

INSTITUT ZA MEDICINSKA ISTRAŽIVANJA I MEDICINU RADA INSTITUT ZA MEDICINSKA ISTRAŽIVANJA I MEDICINU RADA ZAGREB IZVJEŠTAJ O PRAĆENJU ONEĈIŠĆENJA ZRAKA PM 2,5 ĈESTICAMA NA PODRUĈJU GRADA ZAGREBA (za 2011. godinu) Zagreb, ožujak 2012. 2 JEDINICA ZA HIGIJENU

Више