Pred_PLS_2

Величина: px
Почињати приказ од странице:

Download "Pred_PLS_2"

Транскрипт

1 Sinteza logičkih kola Vanr.prof.dr.Lejla Banjanović- Mehmedović

2 Sadržaj izlaganja Procedura projektovanja logičkih kola Osnovni elementi u projektovanju logičkih kola Primjeri sinteze logičkih kola

3 Koraci u projektovanju logičkih sistema Razumjeti problem Šta logičko kolo treba da radi Šta su ulazi (podaci, kontrola) i izlazi Nacrtati block diagram ili sliku Formulisati problem korištenjem odgovarajuće forme projektovanja Tabela istine Može zahtjevati kodiranje simboličkih ulaza i izlaza Izabrati implementacioni cilj (diskretna logička kola) Slijediti implementacionu proceduru (CAD alat, hardverski jezik, npr.verilog)

4 Tipična funkcionalnost CAD alata Koraci u projektovanju: Tabela istine, shematski prikaz - način iskazivanja zahtjeva Sinteza i optimizacija (sinteza- transformiše dizajnerske zahtjeve u logički dizajn) Simulacija Fizički dizajn (transformiše logički graf u layout (blueprint) za fabrikaciju

5 Sinteza logičkih kola Zadatak sinteze logičkih kola se rješava u četiri etape: Formulisanje tablice istinitosti na osnovu zadate namjene kola Generisanje odgovarajuće Bulove funkcije Uprošćavanje ili minimizacija dobijene Bulove funkcije Realizacija minimizovane Bulove funkcije pomoću raspoloživih logičkih kola

6 Konjuktivne i disjunktivne forme Literal bilo koja logička promjenljiva ili njena negacija. Logički izraz koji je literal ili predstavlja konjukciju više literala u kojoj se ni jedna promjenljiva ne javlja više od jednaput, naziva se elementarna konjukcija. ABD Logički izraz koji je literal ili predstavlja disjunkciju više literala u kojoj se ni jedna promjenljiva ne javlja više od jednaput, naziva se elementarna disjunkcija. A B D

7 Konjuktivne i disjunktivne forme Disjunktivna forma - logički izraz koji ima oblik disjunkcije više prostijih izraza (članova). A BC AB Disjunktivna normalna forma (DNF) ili suma proizvoda (SOP) svaki od izraza je elementarna konjukcija. A BC ABC Za funkciju n varijabli, forma proizvoda, u kojoj se svaka od n varijabli pojavljuje jednom naziva se minterma. Savršena disjunktivna normalna forma (SDNF) - disjunktivna normalna forma mintermi Y = ABC ABC ABC

8 Konjuktivne i disjunktivne forme Konjuktivna forma -logički izraz koji ima oblik konjukcije više prostijih izraza (članova) ABC( B C) Konjuktivna normalna forma (KNF) ili proizvod suma (POS) svaki od izraza je elementarna disjunkcija A( B C)( A B C) Za funkciju n varijabli, forma sume, u kojoj se svaka od n varijabli pojavljuje jednom naziva se maksterma. Savršena konjuktivna normalna forma (SKNF) - konjuktivna normalna forma makstermi Y = ( A B C)( A B C)( A B C)

9 Konjuktivne i disjunktivne forme Dužina neke disjunktivne ili konjuktivne normalne forme je ukupan broj literala koji se javljaju u njoj, tj. ukupan broj pojavljivanja svake od promjenljivih koja se javlja u funkciji. (npr. 3 ili 8 ili 9). Za logičku funkciju kaže se da je data u minimalnoj disjunktivnoj normalnoj formi (MDNF) ukoliko je data u disjunktivnoj normalnoj formi i ukoliko ne postoji kraća disjunktivna normalna forma koja joj je ekvivalentna. Y = ABC ABC D..( DNF) Y = AB D..( MDNF) Minimalna konjuktivna normalna forma(mknf)

10 Formiranje logičkog izraza iz kombinacione tabele Da bi se formirao izraz u obliku SDNF koji odgovara zadatoj kombinacionoj tabeli, za svaki red tabele u kojem se uzima vrijednost 1 treba formirati mintermu u kojoj one promjenljive koje u tom redu tabele imaju vrijednost 0 ulaze sa negacijom, a one koje imaju vrijednost 1 ulaze bez negacije. A B C Y Tražena SDNF je disjunkcija svih takvih mintermi. Y = ABC ABC ABC ABC ABC..( SDNF)

11 Formiranje logičkog izraza iz kombinacione tabele Da bi se formirao izraz u obliku SKNF koji odgovara zadatoj kombinacionoj tabeli, za svaki red tabele u kojem se uzima vrijednost 0 treba formirati makstermu u kojoj one promjenljive koje u tom redu tabele imaju vrijednost 0 ulaze bez negacije, a one koje imaju vrijednost 1 ulaze sa negacijom. A B C Y Tražena SKNF je konjukcija svih takvih makstermi. Y = ( A B C)( A B C)( A B C)..( SKNF)

12 Minterme i maksterme 3 ulazne varijable Realni sistemi su složeni, sa većim brojem varijabli...

13 Primjer 1: Sinteza funkcije korištenjem mintermi i makstermi

14 Primjer 1: Realizacija funkcije

15 Primjer 2: Kontrola rasvjete Velika prostorija ima troje vrata i prekidač u blizini vrata za kontrolu rasvjete u sobi. Moguće je uključiti ili isključiti rasvjetu, promjenom stanja svakog od prekidača (tri ulazne varijable (x1,x2,x3)). Pretpostavimo da je svjetlo isključeno, ako su svi prekidači otvoreni (isključeni). Zatvaranje bilo kojeg od prekidača, će upaliti svjetlo. Potom uključenje drugog prekidača će isključiti rasvjetu. Rasvjeta će biti uključena ako je tačno jedan prekidač uključen (zatvoren) i isključena ako su dva (ili nijedan) prekidač uključen. Ako je rasvjeta isključena, kada su dva prekidača zatvorena, mora biti moguće je uključiti, pritiskom na treći prekidač.

16 Primjer 2: Kontrola rasvjete

17 Primjer 2: Kontrola rasvjete

18 Primjer 3: Selekcija ulaznih vrijednosti U računarskim sistemima, neophodno izabrati podatak sa tačno jednog od brojnih ulaza. Pretpostavimo dvaulaznasignala x1 ix2. Njihove vrijednosti se mjenjaju u vremenu u nekim regularnim intervalima u zavisnosti od selekcije kontrolnogsignalas. Logična tri ulaza (x1,x2,s) Izlaz isti kao ulazx1 ako je s = 0, isti kao x2 ako jes = 1.

19 Primjer 3: Selekcija ulaznih vrijednosti

20 Primjer 3: Selekcija ulaznih vrijednosti

21 Primjer 4: Sistem za spaljivanje toksičnih otpada Redudantni sistem: Sa više senzora Najmanje 2 senzora detektuju vatru, otvoreni ventili

22 Primjer 4: Tabela istine za analizirani sistem

23 Primjer 4: Realizacija logičke funkcije

24 Univerzalne logičke operacije Svaka logička funkcija se može izraziti preko operacija konjukcije, disjunkcije i negacije. Dovoljne negacija i konjukcija, jer se i disjunkcija može izraziti preko ove dvije operacije: X Y = XY Dovoljne negacija i disjunkcija, jer vrijedi formula: XY = X Y Svaka logička funkcija se može izraziti preko Shefferove operacije(negacija konjukcije) ili alternativno preko Pierceove funkcije (negacija disjunkcije); nazivaju se univerzalne logičke operacije. NAND i NOR univerzalna logička kola

25 Realizacija logičkih kola pomoću NI i NILI kola Svako logičko kolo se može realizovati pomoću NI ili NILI logičkih kola, što je od praktičnog značaja pri realizaciji integralnih digitalnih kola. Problemi realizacije Bulovih funkcija pomoću isključivo NI ili NILI kola (homogenizacija kola) mogu se rješiti i analitičkim postupkom, primjenom De Morganovih pravila.

26 Realizacija logičkih kola pomoću NI i NILI kola Nakon uvođenja negacija u polazni izraz (parcijalno) primenjujemo De Morganove teoreme tako da: eliminišemo zbirove, prevodeći ih u negirane proizvode, kod realizacije pomoću NI kola. eliminišemo proizvode, prevodeći ih u negirane zbirove, kod realizacije pomoću NILI kola.

27 Realizacija logičkih kola pomoću NI kola

28 Realizacija elementarnih kola pomoću NILI kola

29 DeMorgan steorema u formi logičkih gejtova

30 ImplementacijaSOP-a korištenjem NAND gejtova

31 ImplementacijaPOS-a korištenjem NOR gejtova

32 Primjer 5: Komparator signala Neka je potrebno projektovati logičko kolo koje ima funkciju komparatora dva signala x i y. Izlazni signal treba da bude:

33 Primjer 5: Komparator signala SOP: NI funkcija POS:

34 Primjer 6: Pumpni sistem Rad svake od četiri pumpi se kontroliše pomoću električnog signala koji ima naponod 5V, ako je pumpa u radu, a nulti napon ako je u kvaru. Neophodno je da bar dvije od četiri pumpe budu stalno u radu, a u protivnom bi trebalo aktivirati zvučni alarm. Alarmni uređaj se aktivira naponskim signalom od 5V. Projektovati logičko kolo, sastavljeno od NILI kola, kojeće u slučaju potrebe aktivirati alarmni uređaj.

35 Primjer 6: Pumpni sistem Funkcija alarma ima logičku vrijednost 1 (alarmantna situacija) ako nijedna ili najviše jedna od 4 promenljivih ima jediničnu vrijednost (pumpa u radu), dok su ostale jednake nuli.

36 Primjer 6: Pumpni sistem Za realizaciju je neophodno ukupno 14 NILI kola (8+6invertora, označenih kružićima)

37 Primjer 7: Sistem rezervoara Zaodržavanjenivoa(dopunjavanjem) u 4 rezervoara(a,b,c,d), naraspolaganjusu2 pumpe, P1 i P2, štoje dovoljnou normalnom režimu. Kada u nekom rezervoaru nivo padne ispoddozvoljenog, automatskise generišesignal kojiuključujepumpuradi korekcijenivoa. PumpuP2 možeda pozove svakiod 4 rezervoaraa pumpup1 samorezervoari C i D. Alarmantna situacija nastaje kada neki od rezervoarane možedapriključipumpujerje zauzeta. Formirati kolo za generisanje alarmnog signala pomoću NI logičkih kola.

38 Primjer 7: Sistem rezervoara Pozivni signal ima vrijednost 1 ako rezervoar poziva pumpu, a 0 ako nema potrebe za pumpom Alarm ima vrednost 1 ako 3 ili više rezervoara traži pumpu, ili ako pumpu istovremeno pozivaju rezervoari A i B

39 Primjer 7: Sistem rezervoara

40 Primjer 8: Solarni sistem zagrijavanja

41 Primjer 8: Solarni sistem zagrijavanja Sunce zagrijava solarni kolektor, koji može prenositi toplotu u termo-akumulacijske blokove kamenja (za pohranjivanje toplote) ili direktno u kuću. Ventilator VBP se koristi za pomjeranje topline iz kamenih blokova u prostoriju Ventilator VSP se koristi za pomjeranje topline iz solarnog kolektora u prostoriju Ventilator VSB se koristi za pomjeranje topline iz solarnog kolektora u kamene blokove

42 Primjer 8: Solarni sistem zagrijavanja Postoji nekoliko senzora koji daju nekoliko signala: Kada prostorija treba toplotu, signal Tpostaje TRUE. Ovaj signal se dobija od temperaturnog senzora (termostata) u prostoriji. Kada je kameni blok topliji od prostorije (može davati toplotu),b>psignal je TRUE. Ovaj signal se dobija komparacijom dvije vrijednosti temperature (dva temp. senzora). Ista logika se koristi i za: Signal S>P kada je solarni kolektor topliji od prostorije Signal S>B kada je solarni kolektor topliji od kamenih blokova.

43 Primjer 8: Solarni sistem zagrijavanja T (A) B>P (B) S>P (C) S>B (D) VBP VSP VSB

44 Primjer 8: Solarni sistem zagrijavanja Zapis u SoP obliku i minimizacija Boole-ovom algebrom

45 Primjer 8: Solarni sistem zagrijavanja Prikaz minimalne forme funkcije, prikazane pomoću NAND kola:

46 Primjer 9: Sistem za pakovanje Copyright: Lejla Banjanović-Mehmedović

47 Primjer 9: Sistem za pakovanje Transportna traka kreće na signal START Prilikom aktivacije senzora FOTO, ukoliko je traka aktivna, otvara se ventil koji puni ambalažu dok se ona nalazi u polju fotosenzora. Nakon toga roba s trake izlazi u kutiju. Sistem radi dok se ne aktivira senzor VAG (ograničenje mase kutije proizvoda), koji mjeri masu kutije u koju silaze proizvodi s trake Ukoliko želi, radnik može omogućiti da se zaobiđe blokada trake preopterećenjem vage, aktivacijom preklopke MASAx2. U tom slučaju traka nastavlja raditi iako je vaga preopterećena. START FOTO VAGA MASAx2 VEN TRA Copyright: Lejla Banjanović-Mehmedović

48 Primjer 9: Sistem za pakovanje START=A, FOTO=B, VAGA=C, MASAx2=D) VEN: VEN=ABC'D' + ABC'D + ABCD TRA: TRA=AB'C'D' + AB'C'D + AB'CD + ABC'D' + ABC'D + ABCD Minimizacija: VEN: VEN=ABC'(D'+D) + ABCD=ABC' + ABCD= AB(C'+CD)=AB(C'+D)=ABC' +ABD TRA: TRA=AB'C'(D'+D) + ABC'(D'+D) + ACD(B'+B)=AB'C' + ABC' + ACD=AC'(B'+B) +ACD= =AC' +ACD=A(C'+CD)=A(C'+C'D+CD)= A(C'+D(C +C))= AC' +AD Copyright: Lejla Banjanović-Mehmedović

49 Primjer 9: Sistem za pakovanje

50 Primjer 9: Sistem za pakovanje

Орт колоквијум

Орт колоквијум Задатак 1 I колоквијум из Основа рачунарске технике I - надокнада - 008/009 (16.05.009.) Р е ш е њ е a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један, лако

Више

Орт колоквијум

Орт колоквијум I колоквијум из Основа рачунарске технике I - надокнада СИ - 008/009 (10.05.009.) Р е ш е њ е Задатак 1 a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један,

Више

Microsoft Word - SIORT1_2019_K1_resenje.docx

Microsoft Word - SIORT1_2019_K1_resenje.docx I колоквијум из Основа рачунарске технике I СИ- 208/209 (24.03.209.) Р е ш е њ е Задатак f(x, x 2, x 3 ) = (x + x x ) x (x x 2 + x ) + x x 2 x 3 f(x, x 2, x 3 ) = (x + x x ) (x x + (x )) 2 + x + x x 2

Више

I колоквијум из Основа рачунарске технике I СИ- 2017/2018 ( ) Р е ш е њ е Задатак 1 Тачка А Потребно је прво пронаћи вредности функција f(x

I колоквијум из Основа рачунарске технике I СИ- 2017/2018 ( ) Р е ш е њ е Задатак 1 Тачка А Потребно је прво пронаћи вредности функција f(x I колоквијум из Основа рачунарске технике I СИ- / (...) Р е ш е њ е Задатак Тачка А Потребно је прво пронаћи вредности функција f(x, x, x ) и g(x, x, x ) на свим векторима. f(x, x, x ) = x x + x x + x

Више

Орт колоквијум

Орт колоквијум II колоквијум из Основа рачунарске технике I - 27/28 (.6.28.) Р е ш е њ е Задатак На улазе x, x 2, x 3, x 4 комбинационе мреже, са излазом z, долази четворобитни BCD број. Ако број са улаза при дељењу

Више

Logičke izjave i logičke funkcije

Logičke izjave i logičke funkcije Logičke izjave i logičke funkcije Građa računala, prijenos podataka u računalu Što su logičke izjave? Logička izjava je tvrdnja koja može biti istinita (True) ili lažna (False). Ako je u logičkoj izjavi

Више

LAB PRAKTIKUM OR1 _ETR_

LAB PRAKTIKUM OR1 _ETR_ UNIVERZITET CRNE GORE ELEKTROTEHNIČKI FAKULTET STUDIJSKI PROGRAM: ELEKTRONIKA, TELEKOMUNIKACIJE I RAČUNARI PREDMET: OSNOVE RAČUNARSTVA 1 FOND ČASOVA: 2+1+1 LABORATORIJSKA VJEŽBA BROJ 1 NAZIV: REALIZACIJA

Више

Microsoft PowerPoint - 10 PEK EMT Logicka simulacija 1 od 2 (2012).ppt [Compatibility Mode]

Microsoft PowerPoint - 10 PEK EMT Logicka simulacija 1 od 2 (2012).ppt [Compatibility Mode] ij Cilj: Dobiti što više informacija o ponašanju digitalnih kola za što kraće vreme. Metod: - Detaljni talasni oblik signala prikazati samo na nivou logičkih stanja. - Simulirati ponašanje kola samo u

Више

Орт колоквијум

Орт колоквијум Испит из Основа рачунарске технике - / (6.6.. Р е ш е њ е Задатак Комбинациона мрежа има пет улаза, по два за број освојених сетова тенисера и један сигнал који одлучује ко је бољи уколико је резултат

Више

Универзитет у Нишу Природно-математички факултет Увод у рачунарство Број индекса 200 II домаћи задатак 1. За прекидачку функцију ff(xx 1, xx 2, xx 3 )

Универзитет у Нишу Природно-математички факултет Увод у рачунарство Број индекса 200 II домаћи задатак 1. За прекидачку функцију ff(xx 1, xx 2, xx 3 ) Универзитет у Нишу Природно-математички факултет Увод у рачунарство Број индекса 200 II домаћи задатак 1. За прекидачку функцију ff(xx 1, xx 2, xx 3 ) = (xx 1 + xx 2 + xx 3 )(xx 1 + xx 2 + )(xx 3 1 + xx

Више

Испит из Основа рачунарске технике OO /2018 ( ) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИЛИ кола дат је на след

Испит из Основа рачунарске технике OO /2018 ( ) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИЛИ кола дат је на след Испит из Основа рачунарске технике OO - / (...) Р е ш е њ е Задатак Асинхрони RS флип флопреализован помоћу НИЛИ кола дат је на следећој слици: S R Асинхрони RS флип флопреализован помоћу НИЛИ кола је

Више

Microsoft Word - 1.Operacije i zakoni operacija

Microsoft Word - 1.Operacije i zakoni operacija 1. Operacije i zakoni operacija Neka je S neprazan skup. Operacija dužine n skupa S jeste svako preslikavanje : n n f S S ( S = S S S... S) Ako je n = 1, onda operaciju nazivamo unarna. ( f : S S ) Ako

Више

Испит из Основа рачунарске технике OO /2018 ( ) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИ кола дат је на следећ

Испит из Основа рачунарске технике OO /2018 ( ) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИ кола дат је на следећ Испит из Основа рачунарске технике OO - 27/2 (9.6.2.) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИ кола дат је на следећој слици: S Q R Q Асинхрони RS флип флопреализован помоћу НИ

Више

УНИВЕРЗИТЕТ У НИШУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Департман за рачунарске науке Писмени део испита из предмета Увод у рачунарство 1. [7 пое

УНИВЕРЗИТЕТ У НИШУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Департман за рачунарске науке Писмени део испита из предмета Увод у рачунарство 1. [7 пое УНИВЕРЗИТЕТ У НИШУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Департман за рачунарске науке 30.06.2018. Писмени део испита из предмета Увод у рачунарство 1. [7 поена] Методом МакКласкија минимизарити систем прекидачких

Више

AKVIZICIJA PODATAKA SA UREĐAJEM NI USB-6008 NI USB-6008 je jednostavni višenamjenski uređaj koji se koristi za akviziciju podataka (preko USBa), kao i

AKVIZICIJA PODATAKA SA UREĐAJEM NI USB-6008 NI USB-6008 je jednostavni višenamjenski uređaj koji se koristi za akviziciju podataka (preko USBa), kao i AKVIZICIJA PODATAKA SA UREĐAJEM NI USB-6008 NI USB-6008 je jednostavni višenamjenski uređaj koji se koristi za akviziciju podataka (preko USBa), kao i za generisanje željenih izlaznih signala (slika 1).

Више

VIK-01 opis

VIK-01 opis Višenamensko interfejsno kolo VIK-01 Višenamensko interfejsno kolo VIK-01 (slika 1) služi za povezivanje različitih senzora: otpornog senzora temperature, mernih traka u mostnoj vezi, termopara i dr. Pored

Више

Архитектура и организациjа рачунара Милан Банковић 10. април 2019.

Архитектура и организациjа рачунара Милан Банковић 10. април 2019. Архитектура и организациjа рачунара Милан Банковић 10. април 2019. 2 Садржаj I Основи дигиталне логике 5 1 Логичке функциjе и логички изрази 7 1.1 Булова алгебра............................ 7 1.1.1 Аксиоме

Више

Microsoft Word - Tabela 5.2 Specifikacija predmeta.doc

Microsoft Word - Tabela 5.2 Specifikacija predmeta.doc Универзитет у Нишу Машински факултет у Нишу TAБЕЛА 5.2 СПЕЦИФИКАЦИЈА ПРЕДМЕТА Ниш, октобар 2008. Табела М.5.2-М 1 Спецификација предмета на модулу М 1 : Енергетика и процесна техника 7. М.2.1-ОМ.1-ЕН Простирање

Више

Slide 1

Slide 1 Катедра за управљање системима ТЕОРИЈА СИСТЕМА Предавањe 2: Основни појмови - систем, модел система, улаз и излаз UNIVERSITY OF BELGRADE FACULTY OF ORGANIZATIONAL SCIENCES План предавања 2018/2019. 1.

Више

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe 6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju

Више

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3 Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b

Више

Skripte2013

Skripte2013 Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar

Више

Microsoft Word - CAD sistemi

Microsoft Word - CAD sistemi U opštem slučaju, se mogu podeliti na 2D i 3D. 2D Prvo pojavljivanje 2D CAD sistema se dogodilo pre više od 30 godina. Do tada su inženjeri koristili table za crtanje (kulman), a zajednički jezik komuniciranja

Више

Teorija skupova - blog.sake.ba

Teorija skupova - blog.sake.ba Uvod Matematika je jedan od najomraženijih predmeta kod većine učenika S pravom, dakako! Zapitajmo se šta je uzrok tome? Da li je matematika zaista toliko teška, komplikovana? Odgovor je jednostavan, naravno

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

Matrice. Algebarske operacije s matricama. - Predavanje I

Matrice. Algebarske operacije s matricama. - Predavanje I Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,

Више

Увод у организацију и архитектуру рачунара 1

Увод у организацију и архитектуру рачунара 1 Увод у организацију и архитектуру рачунара 2 Александар Картељ kartelj@matf.bg.ac.rs Напомена: садржај ових слајдова је преузет од проф. Саше Малкова Увод у организацију и архитектуру рачунара 2 1 Секвенцијалне

Више

Ravno kretanje krutog tela

Ravno kretanje krutog tela Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela

Више

oae_10_dom

oae_10_dom ETF U BEOGRADU, ODSEK ZA ELEKTRONIKU Milan Prokin Radivoje Đurić domaći zadaci - 2010 1. Domaći zadatak 1.1. a) [4] Nacrtati direktno spregnut pojačavač (bez upotrebe sprežnih kondenzatora) sa NPN tranzistorima

Више

P2.1 Formalne gramatike

P2.1 Formalne gramatike Превођење Полазни језик? Одредишни језик 1 Превођење Полазни језик? Одредишни језик Како знање неког језика стиче и складишти човек, а како рачунар? 2 Два аспекта језика Синтакса Семантика значење То су

Више

SRV_1_Problematika_real_time_sistema

SRV_1_Problematika_real_time_sistema SISTEMI REALNOG VREMENA Vanr.prof. Dr. Lejla Banjanović-Mehmedović www.lejla-bm.com.ba Mehmedović 1 Sadržaj predmeta 1. Problematika real-time sistema. Klasifikacije sistema u realnom vremenu. 2. Aplikacije

Више

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако

Више

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi 3. siječnja 0. od 3:00 do 4:00 RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovitelji Sadržaj Zadaci. 4.... Zadaci 5. 0.... 3 od 8 Zadaci. 4. U sljedećim pitanjima na pitanja odgovaraš upisivanjem

Више

ELEKTRONIKA

ELEKTRONIKA МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

Више

Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аут

Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аут Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Иван Жупунски, Небојша Пјевалица, Марјан Урекар,

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011)

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011) РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11000 Београд, Мике Аласа 14, ПП: 34, ПАК: 105 305 телефон: (011) 32-82-736, телефакс: (011) 21-81-668 На основу члана 192. ст.

Више

P1.2 Projektovanje asemblera

P1.2 Projektovanje asemblera ПРОЈЕКТОВАЊЕ АСЕМБЛЕРА Асемблер Модули асемблера 1 Дефинисање новог лингвистичког нивоа превођењем Потребан преводилац алат који преводи програм написан на једном језику (на једном лингвистичком нивоу)

Више

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005 ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 фебруар 1. год. 1. Пећ сачињена од три грејача отпорности R=6Ω, везана у звезду, напаја се са мреже xv, 5Hz, преко три фазна регулатора, као на слици. Угао "паљења" тиристора је

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

Microsoft PowerPoint - 1.DE.RI3g.09.Uvod

Microsoft PowerPoint - 1.DE.RI3g.09.Uvod Дејан Јокић Миломир Шоја Предмет: ДИГИТАЛНА ЕЛЕКТРОНИКА Број кредита: 6 Седмично часова: 2+2+12+1 (П+АВ+ЛВ) Укупно часова: 30+45 Пун назив ДИГИТАЛНА ЕЛЕКТРОНИКА Скраћени назив Статус Семестар ЕСПБ Фонд

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година

Више

Državno natjecanje / Osnove informatike Srednje škole Zadaci U sljedećim pitanjima na odgovore odgovaraš upisivanjem slova koji se nalazi ispred

Državno natjecanje / Osnove informatike Srednje škole Zadaci U sljedećim pitanjima na odgovore odgovaraš upisivanjem slova koji se nalazi ispred Zadaci. 8. U sljedećim pitanjima na odgovore odgovaraš upisivanjem slova koji se nalazi ispred točnog odgovora, u za to predviđen prostor. Odgovor Ako želimo stvoriti i pohraniti sliku, ali tako da promjenom

Више

ELEKTROTEHNIČKI FAKULTET, UNIVERZITET U BEOGRADU KATEDRA ZA ELEKTRONIKU UVOD U ELEKTRONIKU - 13E041UE LABORATORIJSKA VEŽBA Primena mikrokontrolera

ELEKTROTEHNIČKI FAKULTET, UNIVERZITET U BEOGRADU KATEDRA ZA ELEKTRONIKU UVOD U ELEKTRONIKU - 13E041UE LABORATORIJSKA VEŽBA Primena mikrokontrolera ELEKTROTEHNIČKI FAKULTET, UNIVERZITET U BEOGRADU KATEDRA ZA ELEKTRONIKU UVOD U ELEKTRONIKU - 13E041UE LABORATORIJSKA VEŽBA Primena mikrokontrolera CILJ VEŽBE Cilj ove vežbe je da se studenti kreiranjem

Више

M-3-699

M-3-699 РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ЕКОНОМИЈЕ И РЕГИОНАЛНОГ РАЗВОЈА ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански фах 384 телефон: (011) 328-2736, телефакс: (011) 2181-668 На

Више

Tutoring System for Distance Learning of Java Programming Language

Tutoring System for Distance Learning of Java Programming Language Deklaracija promenljivih Inicijalizacija promenljivih Deklaracija promenljive obuhvata: dodelu simboličkog imena promenljivoj i određivanje tipa promenljive (tip određuje koja će vrsta memorijskog registra

Више

ИСПИТНА ПИТАЊА (ОКВИРНИ СПИСАК) УОАР2 2018/19 ПРВИ ДЕО ГРАДИВА 1. Написати истинитоносне таблице основних логичких везника (НЕ, И, ИЛИ). 2. Написати и

ИСПИТНА ПИТАЊА (ОКВИРНИ СПИСАК) УОАР2 2018/19 ПРВИ ДЕО ГРАДИВА 1. Написати истинитоносне таблице основних логичких везника (НЕ, И, ИЛИ). 2. Написати и ИСПИТНА ПИТАЊА (ОКВИРНИ СПИСАК) УОАР2 2018/19 ПРВИ ДЕО ГРАДИВА 1. Написати истинитоносне таблице основних логичких везника (НЕ, И, ИЛИ). 2. Написати истинитоносне таблице изведених логичких везника (НИ,

Више

PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla

PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla, 3. mart/ožujak 019. godine Prirodno-matematički fakultet

Више

Microsoft Word - Novi proizvod - Sistem za komunikaciju 720 v1.doc

Microsoft Word - Novi proizvod - Sistem za komunikaciju 720 v1.doc ТЕХНИЧКО РЕШЕЊЕ Нови производ: Једносмерна дистрибуција напона као оптимално решење коришћења енергије алтернативних извора Руководилац пројекта: Живанов Љиљана Одговорно лице: Лазић Мирослав Аутори: Лазић

Више

Microsoft PowerPoint - 13 PIK (Mentor Graphic ASIC).ppt

Microsoft PowerPoint - 13 PIK (Mentor Graphic ASIC).ppt Projektovanje integrisanih kola Delimično projektovanje po narudžbini Sadržaj: Sadržaj: I. I. Uvod Uvod - sistem projektovanja II. II. CMOS Analiza Proces kola primenom računara III. III. Potpuno Optimizacija

Више

TEORIJA SIGNALA I INFORMACIJA

TEORIJA SIGNALA I INFORMACIJA Multiple Input/Multiple Output sistemi MIMO sistemi Ulazi (pobude) Izlazi (odzivi) u 1 u 2 y 1 y 2 u k y r Obrada=Matematički model Načini realizacije: fizički sistemi (hardware) i algoritmi (software)

Више

os07zup-rjes.dvi

os07zup-rjes.dvi RJEŠENJA ZA 4. RAZRED OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI

Више

Microsoft Word - Master 2013

Microsoft Word - Master 2013 ИСПИТНИ РОК: ЈУН 2018/2019 МАСТЕР АКАДЕМСКЕ СТУДИЈЕ (АКРЕДИТАЦИЈА 2013) Студијски програм: ЕЛЕКТРОЕНЕРГЕТИКА Семестар 17.06.2019 Статички електрицитет у технолошким процесима Електронска кола за управљање

Више

УНИВЕРЗИТЕТ У ИСТОЧНОМ САРАЈЕВУ

УНИВЕРЗИТЕТ У ИСТОЧНОМ САРАЈЕВУ УНИВЕРЗИТЕТ У ИСТОЧНОМ САРАЈЕВУ МАШИНСКИ ФАКУЛТЕТ ИСТОЧНО САРАЈЕВО ИСПИТНИ ТЕРМИНИ ЗА ШК. ГОД. 2017./2018. ОКТОБАРСКИ РОК НАПОМЕНА: ИСПИТЕ ОБАВЕЗНО ПРИЈАВИТИ! ПРВА ГОДИНА МАТЕМАТИКА 1 04.10. 2. МЕХАНИКА

Више

Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић

Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Драган Пејић, Бојан Вујичић, Небојша Пјевалица,

Више

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011)

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011) РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11000 Београд, Мике Аласа 14, ПП: 34, ПАК: 105 305 телефон: (011) 32-82-736, телефакс: (011) 21-81-668 На основу члана 136. став

Више

Microsoft Word - ZADACI H&S 1-4.doc

Microsoft Word - ZADACI H&S 1-4.doc H&S - Novi Sad 2005. Opšti sadržaj ZADATAK ZA TAKMIČARE Ove godine nivoi u vodenim sistemima su kritični. Potrebno je napraviti elektronski sistem za kontrolisanje nivoa u jednom sistemu sa vodom. Postoje

Више

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : ( Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)

Више

1

1 Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N

Више

PowerPoint Presentation

PowerPoint Presentation Колоквијум # задатак подељен на 4 питања: теоријска практична пишу се програми, коначно решење се записује на папиру, кодови се архивирају преко сајта Инжењерски оптимизациони алгоритми /3 Проблем: NLP:

Више

Задатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на сл

Задатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на сл Задатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на слици. Разлике нивоа у резервоарима износе h = 5 m и

Више

Principi softverskog inženjerstva O predmetu

Principi softverskog inženjerstva  O predmetu Vežbe - IV nedelja Modeli baze podataka Dražen Drašković, asistent Elektrotehnički fakultet Univerziteta u Beogradu Potrebno je da: Razumete koncepte modela i njegovu svrhu Naučite kako se odnosi između

Више

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove

Више

Microsoft Word - Elektrijada_2008.doc

Microsoft Word - Elektrijada_2008.doc I област. У колу сталне струје са слике познато је: а) када је E, E = и E = укупна снага 3 отпорника је P = W, б) када је E =, E и E = укупна снага отпорника је P = 4 W и 3 в) када је E =, E = и E укупна

Више

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, поштански преградак 34, ПАК телефон:

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, поштански преградак 34, ПАК телефон: РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански преградак 34, ПАК 105305 телефон: (011) 32 82 736, телефакс: (011) 21 81 668 На основу

Више

РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена ) Прва година: ПРВА ГОДИНА - сви сем информатике Име пр

РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена ) Прва година: ПРВА ГОДИНА - сви сем информатике Име пр РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена 23.01.2017.) Прва година: ПРВА ГОДИНА - сви сем информатике Име предмета Датум и термин одржавања писменог дела испита

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

P1.1 Analiza efikasnosti algoritama 1

P1.1 Analiza efikasnosti algoritama 1 Analiza efikasnosti algoritama I Asimptotske notacije Master metoda (teorema) 1 Asimptotske notacije (1/2) Služe za opis vremena izvršenja algoritma T(n) gde je n N veličina ulaznih podataka npr. br. elemenata

Више

Natjecanje 2016.

Natjecanje 2016. I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka

Више

Microsoft Word - Master 2013

Microsoft Word - Master 2013 ИСПИТНИ РОК: СЕПТЕМБАР 2018/2019 МАСТЕР АКАДЕМСКЕ СТУДИЈЕ (АКРЕДИТАЦИЈА 2013) Студијски програм: ЕЛЕКТРОЕНЕРГЕТИКА Семестар 19.08.2019 Електромагнетна компатибилност у електроенергетици Управљање дистрибутивном

Више

УНИВЕРЗИТЕТ У ИСТОЧНОМ САРАЈЕВУ МАШИНСКИ ФАКУЛТЕТ ИСТОЧНО САРАЈЕВО ИСПИТНИ ТЕРМИНИ ЗА ШКОЛСКУ 2018./2019. НАПОМЕНА: Испите обавезно пријавити! ПРЕДМЕТ

УНИВЕРЗИТЕТ У ИСТОЧНОМ САРАЈЕВУ МАШИНСКИ ФАКУЛТЕТ ИСТОЧНО САРАЈЕВО ИСПИТНИ ТЕРМИНИ ЗА ШКОЛСКУ 2018./2019. НАПОМЕНА: Испите обавезно пријавити! ПРЕДМЕТ УНИВЕРЗИТЕТ У ИСТОЧНОМ САРАЈЕВУ МАШИНСКИ ФАКУЛТЕТ ИСТОЧНО САРАЈЕВО ИСПИТНИ ЗА ШКОЛСКУ 2018./2019. I ГОДИНА II 1 МАТЕМАТИКА 1 07.02. 21.02. 18.04. 400 20.06. 04.07. 0.09. 19.09. 400 2 МЕХАНИКА 1 08.02.

Више

Повезивање са интернетом

Повезивање са интернетом Драгана Стопић Интернет Интернет је најпознатија и највећа светска мрежа која повезује рачунаре и рачунарске мреже у једну мрежу, у циљу сарадње и преноса информација употребом заједничких стандарда. INTERnational

Више

M-3-643

M-3-643 РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ЕКОНОМИЈЕ И РЕГИОНАЛНОГ РАЗВОЈА ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански фах 384 телефон: (011) 328-2736, телефакс: (011) 2181-668 На

Више

Задатак 4: Центрифугална пумпа познате карактеристике при n = 2900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у р

Задатак 4: Центрифугална пумпа познате карактеристике при n = 2900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у р Задатак 4: Центрифугална пумпа познате карактеристике при n = 900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у резервоар B. Непосредно на излазу из пумпе постављен

Више

INF INFORMATIKA INF.27.HR.R.K1.20 INF D-S INF D-S027.indd :50:41

INF INFORMATIKA INF.27.HR.R.K1.20 INF D-S INF D-S027.indd :50:41 INF INFORMATIKA INF.7.HR.R.K..indd 7.7.6. 3:5:4 Prazna stranica 99.indd 7.7.6. 3:5:4 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

P11.3 Analiza zivotnog veka, Graf smetnji

P11.3 Analiza zivotnog veka, Graf smetnji Поједностављени поглед на задњи део компајлера Међурепрезентација (Међујезик IR) Избор инструкција Додела ресурса Распоређивање инструкција Инструкције циљне архитектуре 1 Поједностављени поглед на задњи

Више

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година СЕДМИ РАЗРЕД ТЕСТ СПОСОБНОСТИ

Више

Model podataka

Model podataka Fakultet organizacionih nauka Uvod u informacione sisteme Doc. Dr Ognjen Pantelić Modeliranje podataka definisanje strategije snimanje postojećeg stanja projektovanje aplikativno modeliranje implementacija

Више

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005 ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 00. год.. Пећ сачињена од три грејача отпорности =0Ω, везана у звезду, напаја се са мреже 3x380V, 50Hz, преко три фазна регулатора, као на слици. Угао паљења тиристора је α=90,

Више

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robotika Zagreb, 2014. MODEL PROCESA U PROSTORU STANJA

Више

RED VOŽNJE ZA BESPLATAN PREVOZ LINIJA 1 UŠĆE TRG REPUBLIKE Polazno stajalište za ULAZ 6 kaplara za linije 16, 75, u smeru ka Zelenom vencu Krajn

RED VOŽNJE ZA BESPLATAN PREVOZ LINIJA 1 UŠĆE TRG REPUBLIKE Polazno stajalište za ULAZ 6 kaplara za linije 16, 75, u smeru ka Zelenom vencu Krajn LINIJA 1 UŠĆE TRG REPUBLIKE Polazno stajalište za ULAZ za linije 16, 75, 83... u smeru ka Zelenom vencu Krajnje ULAZNO-IZLAZNO stajalište Trg Republike za linije 43, 96, 32E... SMER TRG REPUBLIKE - UŠĆE

Више

Microsoft Word - Rjesenja zadataka

Microsoft Word - Rjesenja zadataka 1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji

Више

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1 1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)

Више

Microsoft Word - 4.Ee1.AC-DC_pretvaraci.10

Microsoft Word - 4.Ee1.AC-DC_pretvaraci.10 AC-DC ПРЕТВАРАЧИ (ИСПРАВЉАЧИ) Задатак 1. Једнофазни исправљач са повратном диодом, са слике 1, прикључен на напон 1 V, 5 Hz напаја потрошач велике индуктивности струјом од 1 А. Нацртати таласне облике

Више

УНИВЕРЗИТЕТ У ИСТОЧНОМ САРАЈЕВУ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ ПРЕДМЕТ Почетак испита Термин Математика Основи електротехнике

УНИВЕРЗИТЕТ У ИСТОЧНОМ САРАЈЕВУ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ ПРЕДМЕТ Почетак испита Термин Математика Основи електротехнике Математика 1 16.00 18.04.17. Основи електротехнике 1 16.00 20.04.17. Физика 16.00 19.04.17. Увод у менаџмент 16.00 13.04.17. Енглески језик 1 16.00 21.04.17. Основи рачунарске технике 16.00 12.04.17. Математика

Више

PowerPoint Presentation

PowerPoint Presentation SVEUČILIŠTE U ZAGREBU Fakultet prometnih znanosti Zavod za inteligentne transportne sustave Vukelićeva 4, Zagreb, HRVATSKA Računalstvo Operatori, pisanje izraza i osnove pseudokôda Izv. prof. dr. sc. Edouard

Више

Classroom Expectations

Classroom Expectations АТ-8: Терминирање производно-технолошких ентитета Проф. др Зоран Миљковић Садржај Пројектовање флексибилних ; Математички модел за оптимизацију флексибилних ; Генетички алгоритми у оптимизацији флексибилних

Више

Algoritmi i arhitekture DSP I

Algoritmi i arhitekture DSP I Univerzitet u Novom Sadu Fakultet Tehničkih Nauka Katedra za računarsku tehniku i međuračunarske komunikacije Algoritmi i arhitekture DSP I INTERNA ORGANIACIJA DIGITALNOG PROCESORA A OBRADU SIGNALA INTERNA

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

CVRSTOCA

CVRSTOCA ČVRSTOĆA 12 TEORIJE ČVRSTOĆE NAPREGNUTO STANJE Pri analizi unutarnjih sila koje se pojavljuju u kosom presjeku štapa opterećenog na vlak ili tlak, pri jednoosnom napregnutom stanju, u tim presjecima istodobno

Више

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca

Више

"FITIŠ-JU"d.o.o PP Centrala serije KFP-CF Datum:28/10/09 "FITIŠ - JU" d.o.o Tema: Kratko uputsvo za rukovanje Šifra: List:1 Konvencionalna centrala za

FITIŠ-JUd.o.o PP Centrala serije KFP-CF Datum:28/10/09 FITIŠ - JU d.o.o Tema: Kratko uputsvo za rukovanje Šifra: List:1 Konvencionalna centrala za List:1 Konvencionalna centrala za signalizaciju požara serije KFP-CF Uputstvo za korisnika List:2 Uvod KFP-CF centrale su konvecionalne centrale za signalizaciju požara. Postoji varijanta sa 2,4 i 8 zona.

Више

Grafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odr

Grafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odr Grafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odrediti njene krajeve. b) Odrediti sledeće skupove: -

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

Generalizirani trag i normalne forme za logiku interpretabilnosti Vedran Čačić PMF Matematički odsjek Sveučilište u Zagrebu Dubrovnik radiona Sustavi

Generalizirani trag i normalne forme za logiku interpretabilnosti Vedran Čačić PMF Matematički odsjek Sveučilište u Zagrebu Dubrovnik radiona Sustavi Generalizirani trag i normalne forme za logiku interpretabilnosti Vedran Čačić PMF Matematički odsjek Sveučilište u Zagrebu Dubrovnik radiona Sustavi dokazivanja 28. lipnja 2012. Zašto logika interpretabilnosti?

Више

PROMENLJIVE, TIPOVI PROMENLJIVIH

PROMENLJIVE, TIPOVI PROMENLJIVIH PROMENLJIVE, TIPOVI PROMENLJIVIH Šta je promenljiva? To je objekat jezika koji ima ime i kome se mogu dodeljivati vrednosti. Svakoj promenljivoj se dodeljuje registar (memorijska lokacija) operativne memorije

Више

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29 MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

Elementarna matematika 1 - Oblici matematickog mišljenja

Elementarna matematika 1 - Oblici matematickog mišljenja Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s

Више

Microsoft Word - Mat-1---inicijalni testovi--gimnazija

Microsoft Word - Mat-1---inicijalni testovi--gimnazija Inicijalni test BR. 11 za PRVI RAZRED za sve gimnazije i jače tehničke škole 1... Dva radnika okopat će polje za šest dana. Koliko će trebati radnika da se polje okopa za dva dana?? Izračunaj ( ) a) x

Више