ПРИКАЗ НАУЧНИХ И СТРУЧНИХ РАДОВА КАНДИДАТА који садрже резултате истраживања у оквиру докторске дисертације Р. бр. Аутор-и, наслов, часопис, година, б

Величина: px
Почињати приказ од странице:

Download "ПРИКАЗ НАУЧНИХ И СТРУЧНИХ РАДОВА КАНДИДАТА који садрже резултате истраживања у оквиру докторске дисертације Р. бр. Аутор-и, наслов, часопис, година, б"

Транскрипт

1

2 ПРИКАЗ НАУЧНИХ И СТРУЧНИХ РАДОВА КАНДИДАТА који садрже резултате истраживања у оквиру докторске дисертације Р. бр. Аутор-и, наслов, часопис, година, број волумена, странице Категорија S. Stanimirović, M. Ćirić, J. Ignjatović, Determinization of fuzzy automata by factorizations of fuzzy states and right invariant fuzzy quasi-orders, INFORMATION SCIENCES 469 (2018) Коришћењем факторизације фази стања, у овом раду се уводе побољшања детерминизационих метода за фази коначне аутомате који прихватају фази језике са бесконачним рангом. Побољшања су заснована на употреби фази релацијског рачуна, односно на коришћењу десно инваријантних фази квази-уређења. Алгоритми који су овде уведени дају боље резултате од ранијих алгоритама, у смислу да производе знатно мање аутомате а при томе захтевају исто време израчунавања. Поред тога, алгоритми који су овде уведени могу произвести коначне детерминистичке аутомате чак и у случају да раније познати алгоритми производе бесконачне детерминистичке аутомате. Показује се и да тзв. weak representable-cycles својство је потребан и довољан услов за детерминизацију фази аутомата преко максималне факторизације фази стања. Тај услов је општији од тзв. representable-cycles својства које је раније установљено као потребан и довољан услов за детерминизацију фази аутомата преко максималне факторизације фази стања. I. Micić, Z. Jančić, S. Stanimirović, Computation of the greatest right and left invariant fuzzy quasiorders and fuzzy equivalences, FUZZY SETS AND SYSTEMS 339 (2018) У овом раду аутори дају нов алгоритам за рачунање десно инваријантних фази квази уређења за фази аутомате над комплетним резидуираним мрежама. Предложени алгоритам завршава се у коначном броју корака када је истинитосна структура фази аутомата локално коначна. Када претходни услов није задовољен, аутори су показали да се највеће десно инваријантно фази квази уређење може наћи преко граничне вредности конвергентног низа фази квази уређења за фази аутомате над BL-алгебрама на реалном јединичном интервалу [0,1]. Такође су приказане и аналогне процедуре за рачунање највећег лево инваријантног фази квази уређења, као и највеће десне и леве фази еквиваленције. На крају, дат је бржи алгоритам за рачунање највеће десно инваријантне еквиваленције за недетер-министичке аутомате. S. Stanimirović, A. Stamenković, M. Ćirić, Improved algorithms for computing the greatest right and left invariant Boolean matrices and their application, FILOMAT (2019), прихваћен за публиковање. У раду се дефинишу десно и лево инваријантне матрице као Булове матрице које су решења извесних система матричних једначина и неједначина, за матрице над адитивно идемпотентним полупрстенима. Креирани су побољшани алгоритми за израчунавање највећих десно и лево инваријантних еквиваленција и квази-уређења. Побољшања су заснована на коришћењу добро познатих техника уситњења партиција. Након тога, приказане су примене десно инваријантних матрица у детерминизацији тежинских аутомата над адитивно идемпотентним комутативним полупрстеном без делитеља нуле. Добијена су и побољшања добро познатог детерминизационог метода за тежинске аутомате над тропским полупрстеном који је дао M. Mohri [Computational Linguistics 23 (2) (1997) ]. S. Stanimirović, P. Stanimirović, M. Miladinović, A. Ilić, Catalan matrix and related combinatorial identities, APPLIED MATHEMATICS AND COMPUTATION 215 (2009) У раду се уводи ознака Каталанове матрице чији ненула елементи представљају изразе које садрже Каталанове бројеве поређане у доње троугаону Топлицову матрицу. Изведен је израз за инверзну Каталанову матрицу. Изучаване су корелације између Каталанове и генерализоване Паскалове матрице. Неколико комбинаторних идентитета над Каталановим бројевима, биномним коефицијентима и генерализованом хипергеометријском функцијом изведени су као последица ових корелација. Штавише, додатна експлицитна репрезентација Каталанових бројева, као и експлицитна репрезентација суме првих m Каталанових бројева су дате. S. Stanimirović, Some identities on Catalan numbers and hypergeometric functions via Catalan matrix power, APPLIED MATHEMATICS AND COMPUTATION 217 (2011) У раду се користи степен Каталанове матрице као средство за извођење комбинаторних идентитета који укључују Каталанове бројеве и хипергеометријске функције. Проширују се претходно изучаване корелације између Каталанове матрице и Паскалове матрице тако што се умеће степенована Каталанова матрица, а посебно квад-ратна Каталанова матрица. Такође се изучавају и корелације између Каталанових матрица степенованих на разли-чите степене, што за последицу има извођење поједностављених формула за фипергеометријску фунцкију 3 F 2, као и поједностављену формулу за производ Каталановог броја и хипергеомтетријске функције 3F 2 дати су неки додатни идентитети између Каталанових бројева изведени нематричним рачуном. P. Stanimirović, S. Stanimirović, Inverting linear combinatorial identity and generalized Catalan matrices, LINEAR ALGEBRA AND ITS APPLICATONS 433 (2010) На крају, Уводи се ознака генерализоване Каталанове матрице чији ненула елементи представљају изразе које садрже генерализоване Каталанове бројеве поређане у доње троугаону Топлицову матрицу. Инверз линеарне комбинације Паскалове матрице и јединичне матрице изучавани су од стране Aggarwala and Lamoureux (2002). У овом раду, наслањајући се на ову идеју, аутори изучавају инверзе различитих линеарних комбинација генерализоване Каталанове матрице и јединичне матрице. Дају се репрезентације за инверзе линеарних комбинација генерализоване Каталанове матрице и јединичне матрице у преко Хадамардовог производа генерализоване Каталанове матрице и одговарајућих доње троугаоних Топлицових матрица. S. Stanimirović, P. Stanimirović, A. Ilić, Ballot matrix as Catalan matrix power and related identities, DISCRETE APPLIED MATHEMATICS 160 (2012) M21a M21a M22 M21 M21 M22 M22

3 У раду се користи аналитички приступ за налажење степена Каталанове матрице. Прецизније, доказано је да је степен Каталанове матрице доње троугаона Топлицова матрица која садржи добро познате Балотове бројеве. Познати резултат, везан за функцију генератрисе за Каталанове бројеве, проширен је за негативне целе бројеве. Три репрезентације за Каталанове бројеве преко биномних коефицијената и хипергеометријских функција добијени су из корелација између срепенованих Каталанових матрица. S. Stanimirović, A matrix approach to Binomial theorem, UKRAINIAN MATHEMATICAL JOURNAL 64 (11) (2012) Мотивисан биномном формулом, аутор изучава факторизације доње троугаоне Топлицове матрице чији је (i,j)-ти елемент једнак x i j преко Паскалове матрице. На овај начин уведен је нови рачунарски приступ генерализацији биномне теореме. Бројни комбинаторни идентитети изведени су из ових матричних релација. P. Stanimirović, S. Stanimirović, Inversion of Catalan matrix plus one, J. APPL. MATH. COMPUT. 35 (2011) У раду се изучавају инверзи различитих линеарних комбинација Каталанове матрице и јединичне матрице, на основу инверза Паскалове матрице и јединичне матрице изучаване од стране Aggarwala and Lamoureux (2002) који су коришћени у статистици. Инверзи линеарних комбинација Каталанове и јединичне матрице изражени су преко Каталанових бројева, поцхамерове функције и генерализоване хипергеометријске функције. S. Stanimirović, A generalization of the Pascal matrix and its properties, FACTA UNIV. SER. MATH. INFORM. 26 (2011) У раду се уводи појам генерализоване Паскалове матрице и показује се да задовољава бројне особине. Најпре се изучавају бројне факторизације ове матрице. Експлицитна формула за инверз генерализоване Паскалове матрице је изведена. Такође, експлицитне репрезентације за степене генерализоване Паскалове матрице изведене су за целобројне, рационалне и ирационалне експоненте. На крају, инверз линеарне комбинације јединичне матрице и генерализоване Паскалове матрице израчунат је преко формуле за степен генерализоване Паскалове матрице. M23 M24 M51 ИСПУЊЕНОСТ УСЛОВА ЗА ОДБРАНУ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ Кандидат испуњава услове за оцену и одбрану докторске дисертације који су предвиђени Законом о високом образовању, Статутом Универзитета и Статутом Факултета. ДА НЕ Проблеми разматрани у овој тези веома актуелни и уклапају се у глобалне трендове истраживања. Сви резултати приказани у дисертацији су нови и оригинални, неки од тих резултата су већ публиковани, а део је поднет за публиковање у међународним часописима изузетних вредности и врхунским међународним научним часописима. Ти резултати су такође приказани широј научној јавности на међународним научним конференцијама одржаним у Немачкој, Грчкој и Србији. Дисертација је написана прегледно и технички коректно, и докази су такође коректни. У уводу кандидат даје глобалну предисторију проблема разматраних у дисертацији и истиче опште идеје и мотивацију за истраживања. Још дубље у историју разматраних проблема и описивање идеја, мотивације и методологије кандидат залази у уводу сваке главе. Посебну вредност дисертацији дају јасно изложени алгоритми, извршена анализа њиховог времена израчунавања, и имплементација тих алгоритама у програмском језику C#. Према томе, кандидат испуњава све услове за одбрану докторске дисертације који су предвиђени Законом о високом образовању, Статутом Универзитета и Статутом Факултета. ВРЕДНОВАЊЕ ПОЈЕДИНИХ ДЕЛОВА ДОКТОРСКЕ ДИСЕРТАЦИЈЕ Кратак опис појединих делова дисертације (до 500 речи) Детерминизација недетерминистичких коначних аутомата, под чиме подразумевамо конверзију недетерминистичког коначног аутомата у детерминистички коначан аутомат еквивалентан полазном аутомату, је један од основних проблема теорије аутомата који су први пут изучавали Rabin и Scott [IBM J. Res. Dev. 3:2 (1959) ]. Иако дефинисана као апстрактан математички концепт, детерминизација је нашла практичну примену у бројним областима рачунарских наука, као што су процесирање природних и програмских језика, лексикографска анализа, анализа регуларних израза, аутоматско препознавањe говора, препознавањe узорака у вештачкој интелигенцији, верификација и тестирање система, али и у многим областима ван рачунарских наука, као што је молекуларна биологија. Најпознатији детерминизациони алгоритам, на који се ослањају сви остали детерминизациони алгоритми, познат је као подскуповна конструкција (енг. subset construction). Основни проблем који се јавља код подскуповне конструкције лежи у чињеници да њена примена може довести до експоненцијалног повећања број стања аутомата. Преласком са недетерминистичких аутомата на шире класе аутомата, као што су фази и тежински аутомати, тај проблем постаје још израженији, јер код оваквих аутомата примена подскуповне конструкције може довести до тога да скуп стања буде бесконачан. Због тога je у свим поменутим случајевима изузетно важан развој таквих детерминизационих метода који су у стању да премосте проблем енормног раста броја стања и који ће резултовати аутоматом са што мањим бројем стања. Последњих година развијен је већи број ефикасних детерминизационих алгоритама за фази и тежинске аутомате који као резултат дају крисп-детерминистичке аутомате класичне аутомате са детерминистичким прелазима и могуће са бесконачно много стања, код којих су истинитосне вредности или тежине придружене само завршним стањима. Међутим, овакви аутомати прихватају једино фази језике коначног ранга, односно формалне степене редове са коначном потпором. Како у извесним применама у вештачкој интелигенцији важну улогу играју фази језици бесконачног ранга и формални степени редови са бесконачном потпором, то се јавља потреба за детерминистичким аутоматима који ће бити у стању да прихвате поменуте типове фази језика и формалних степених редова, као и потреба за детерминизационим методима који ће генерисати такве ау-

4 томате. Аутомате који задовољавају те потребе увели су De Mendívil и Garitagoitiа [Inf. Sci. 283 (2014) ]. Они су такође увели и одговарајући детерминизациони метод, базиран на појму факторизације фази скупова (у случају фази аутомата), односно фази вектора (у случају тежинских аутомата), који је усавршаван у низу њихових каснијих радова. Међутим, и овај детерминизациони метод је склон енормном расту броја стања, а може довести и до тога да број стања постане бесконачан. Основни проблем којим се аутор бави у овој дисертацији је проналажење начина да се тај раст броја стања ублажи. Он развија више детерминизационих алгоритама који представљају побољшања постојећих алгоритама и у погледу броја стања резултујућих аутомата, и у погледу брзине рада. Оно што је посебно вредно истаћи је то да алгоритми које аутор даје могу дати аутомате са коначним бројем стања чак и у случајевима када раније познати алгоритми дају аутомате са бесконачним бројем стања. Алгоритми које аутор предлаже базирани су на концепту факторизације, као и на препознавању и сажимању еквивалентних стања фази (односно тежинског) аутомата који се конструише. У случају фази аутомата то се врши преко десно и лево инваријантних фази релација, а у случају тежинских аутомата преко десно и лево инваријантних Булових матрица. Примењена је и техника уситњења партиција којом се добијају побољшани алгоритми за израчунавање највећих десно и лево инваријантних Булових матрица еквиваленција и матрица квази-уређења. Такође, разматрани су и начини израчунавања највећих десно и лево инваријантних фази еквиваленција и фази квази-уређења у случају када се алгоритми за њихово израчунавање, базирани на техници уситњења партиција, не завршавају у коначном броју корака. Прва глава дисертације је уводна, и ту аутор представља основне концепте и резултате које користи у даљем раду. Прецизније, он представља основне концепте и резултате који се тичу оних уређених алгебарских структура и полупрстена које ће у наставку дисертације бити коришћене као структуре истинитосних вредности код фази скупова, фази релација и фази аутомата, односно као тежине код тежинских аутомата. Посебна пажња је посвећена (комплетним) резидуираним мрежама, диоидима и адитивно идемпотентним полупрстенима, као и резидуираним мрежама на реалном јединичном интервалу [0,1] и такозваним БЛ- алгебрама на том интервалу. Слично је и са другом главом, где се уводе основни концепти и резултати који се тичу фази и тежинских аутомата, као и фази језика и формалних степених редова. Главни резултати ове докторске дисертације су садржани у Главама 3 6. У Глави 3 аутор се бави израчунавањем највећих десно и лево инваријантних фази еквиваленција и фази квази-уређења. Полазећи од тога да су бржи алгоритми за израчунавање највеће бисимулационе еквиваленције развијени на основу њене уске везе са проблемом најгрубље релационе партиције, у овој глави су дати алгоритми за израчунавање највећих десно и лево инваријантних фази еквиваленција и фази квази-уређења на основу технике уситњења партиција. Та техника је добро позната не само у теорији аутомата, већ и у бројним другим областима рачунарских наука и математике, попут теорије графова, теорије стрингова и Булових матрица. На жалост, алгоритми за израчунавање највећих десно и лево инваријантних фази еквиваленција и фази квази-уређења базирани на техници уситњења партиција не пружају убрзање у односу на исте алгоритме базиране на Теореми Кнастер-Тарског о фиксној тачки, који су развијени у низу скорашњих, односно, раде у истој временској сложености. Са друге стране, доказано је да су низови фази еквиваленција (односно фази квази-уређења), генерисани преко алгоритама базираних на техници уситњења партиција, конвергентни у случају да је структура истинитосних вредности БЛ-алгебра на реалном јединичном интервалу [0,1], као и да се највећа десно (лево) инваријантна фази еквиваленција (фази квази-уређење) може добити преко граничне вредности генерисаних низова. На крају, показано је да се бржи алгоритми могу добити у случају када се рачунају највеће десно или лево инваријантне крисп еквиваленције на фази аутомату. Наиме, док ранији алгоритми за израчунавање највеће десно или лево инваријантне крисп еквиваленције на фази аутомату раде у времену O(mn 5 ), при чему је m број симбола улазног алфабета, а n број стања улазног фази аутомата, алгоритми развијени у овој глави раде у времену O(mn 3 ). Резултати приказани у Глави 3 представљају оригинални научни допринос кандидата, а главни део тих резултата чини садржај једног рада публикованог у часопису FUZZY SETS AND SYSTEMS (категорија М21а). У Глави 4 дати су алгоритми за детерминизацију фази аутомата. Најпре је уведен концепт факторизације фази подскупова у комплетним резидуираним мрежама, а затим су испитивана основна својства факторизације. Потом је развијен детерминизациони метод базиран на коришћењу факторизације фази подскупова и десно инваријантних фази квази-уређења. Овај метод своди се на конструкцију фази аутомата добијеног сажимањем стања применом десно инваријантих фази квази-уређења, а потом применом метода који су развили De Mendívil и Garitagoitiа [Fuzzy Sets Syst. 249 (2014) 1 26]. На овај начин омогућена је детерминизација у случајевима када директна примена метода из поменутог рада резултира комплетним детерминистичким фази аутоматом са бесконачно много стања.такође, развијен је и метод за конструкцију тзв. дечјег фази аутомата, који заправо комбинује детерминизацију преко скупова прелаза и сажимање стања фази аутомата, чиме се добијају додатна побољшања. На крају, дефинишемо такозвано слабо својство репрезентативних циклуса и доказујемо да је то својство потребан и довољан услов да се приказани алгоритми заврше у коначном броју корака. Ово својство општије је од својства репрезентативних циклуса који су претходно De Mendívil и Garitagoitiа [Inf. Sci. 283 (2014) ] одредили као потребан и довољан услов за детерминизацију преко максималне факторизације, чиме је у овој дисертацији проширена класа фази аутомата који могу бити детерминизовани. Ово својство формулише се једино на основу интерне структуре улазног фази аутомата. Сви резултати представљени у Глави 4 су оригинални резултати кандидата, који су публиковани у часопису INFORMATION SCIENCES (категорије М21а) и саопштени на међународним научним конференцијама CAI 2017 (Каламата, Грчка, 2017) и WATA 2018 (Лајпциг, Немачка, 2018). Глава 5 посвећена је развоју алгоритма за канонизацију фази аутомата, под чиме се подразумевају детерминизациони алгоритми који као резултат дају детерминистичке фази аутомате са минималним бројем стања. Алгоритам који аутор развија представља адаптацију добро познатог двоструко реверзног метода Бржовског, и базира се на коришћењу факторизације фази подскупова и лево инваријантних фази квази-уређења. Алгоритам резултира минималним комплетним детерминистичким фази аутоматом, чиме се побољшавају алгоритми развијени у Глави 4. Реверзно слабо својство репрезентативних циклуса одређено је као потребан и довољан услов да би се дати канонизациони метод завршио у коначном броју корака, под условом да је у алгоритму коришћена максимална факторизација. На жалост, примером је показано да постоје фази аутомати који не задовољавају реверзно слабо својство репрезентативних циклуса, али за довољавају слабо својство репрезентативних циклуса, што значи да постоје ситуације када је могуће користити алгоритме из Главе 4, при чему није могуће применити алгоритам описан у овој глави.

5 Резултати приказани у овој глави такође су оригинални допринос кандидата. Конструкција типа Бржовког, која се заснива на факторизацији фази подскупова, разматрана је и у општијем контексту у раду De Mendívil [IEEE Trans. Fuzzy Syst. 26 (2018) ] али се овде показује да се додатна побољшања могу постићи паралелном детерминизацијом и сажимањем еквивалентних стања, што се може постићи применом лево инваријантних фази квази-уређења. Такође, иако су се поједини резултати из ове главе појавили у напред поменутом раду, овде се наводе јер су дати другачији докази. У Глави 6 су дати алгоритми за детерминизацију тежинских аутомата. Најпре су уведене дефиниције (слабо) десно и лево инваријантних Булових матрица као решења одређних система матричних једначина и неједначина над адитивно идемпотентним полупрстенима. Потом су дати алгоритми за рачунање највећих десно и лево инваријантних матрица еквиваленције, као и матрица квази-уређења. Алгоритми су такође базирани на техници уситњења партиције. Стога, алгоритми за израчунавање највећих десно и лево инваријантних Булових матрица еквиваленције извршавају се брже од алгоритама за израчунавање највеће симулације развијених у раду Дамљановић и других [Theor. Comput. Sci. 534 (2014) ], а који се могу директно адаптирати за израчунавање највећих десно и лево инваријантних Булових матрица еквиваленције. Потом је показано како се алгоритми развијени у Главама 3 и 4 могу применити на тежинске аутомате над комутативним, адитивно идемпотетним полупрстенима без делилаца нуле. На тај начин, побољшавају се алгоритми за детерминизацију тежинских аутомата које су развили Јанчић и други [Inf. Sci. 181 (2011) ], Kirsten и Mäurer [J. Autom. Lang. Comb. 10 (2005) ] и Mohri [Computational Linguistics 23 (2) (1997) ]. Садржај Главе 6 такође чине оригинални резултати кандидата који су прихваћени за публиковање у часопису FILOMAT (категорија М22). Алгоритми представљени у Главама 2 6 су имплементирани у програмском језику C#, и кодови тих програма су приказани у додатку А. Списак референци, које су коректно коришћене, састоји се од 220 библиографских јединица. ВРЕДНОВАЊЕ РЕЗУЛТАТА ДОКТОРСКЕ ДИСЕРТАЦИЈЕ Ниво остваривања постављених циљева из пријаве докторске дисертације (до 200 речи) Остварени су сви научни циљеви постављени у пријави докторске дисертације, и више од тога. Вредновање значаја и научног доприноса резултата дисертације (до 200 речи) Резултати ове докторске дисертације су плод истраживања спроведених у оквиру научно-истраживачког пројекта бр Министарства просвете, науке и технолошког развоја Републике Србије. Они су представљени широј научној јавности на више међународних научних конференција одржаних у Немачкој, Грчкој и Србији. О значају и научном доприносу дисертације сведочи то да су резултати из дисертације публиковани у два рада у међународним часописима изузетних вредности, категорија М21а (Information Sciences, Fuzzy Sets and Systems), и једном раду у истакнутом међународном часопису, категорија М22 (Filomat). Један рад је поднет за публиковање у истакнути међународни часопис. Поред поменутих радова, чији је садржај ушао у састав ове докторске дисертације, кандидат је објавио још 7 научних радова, и то 2 рада у часопису категорије М21, 2 рада у часопису категорије М22, и по један рад у часописима категорија М23, М24 и М51. Оцена самосталности научног рада кандидата (до 100 речи) Током израде своје докторске дисертације кандидат је показао да се може самостално бавити научним радом и долазити до вредних научних резултата. На самом почетку израде докторске дисертације кандидат је кренуо од општих идеја које је добио од ментора, а потом је те идеје разрадио и на основу њих формулисао и реализовао бројне сопствене оригиналне идеје, попут одређивања општијих потребних и довољних услова под којима се дати коначни фази аутомат може детерминизовати. ЗАКЉУЧАК (до 100 речи) На основу претходно изложеног можемо закључити да су проблеми разматрани у овој тези веома актуелни и уклапају се у глобалне трендове истраживања. Сви резултати приказани у дисертацији су нови и оригинални, неки од тих резултата су већ публиковани, а део је поднет за публиковање у међународним часописима изузетних вредности и врхунским међународним научним часописима. Ти резултати су такође приказани широј научној јавности на међународним научним конференцијама одржаним у Немачкој, Грчкој и Србији. Дисертација је написана прегледно и технички коректно, и докази су такође коректни. У уводу кандидат даје глобалну предисторију проблема разматраних у дисертацији и истиче опште идеје и мотивацију за истраживања. Још дубље у историју разматраних проблема и описивање идеја, мотивације и методологије кандидат залази у уводу сваке главе. Посебну вредност дисертацији дају јасно изложени алгоритми, извршена анализа њиховог времена израчунавања, и имплементација тих алгоритама у програмском језику C#. На основу свега овог Комисија са задовољством предлаже Наставно-научном већу Природно-математичког факултета Универзитета у Нишу да прихвати докторску дисертацију Стефана Станимировића под насловом Побољшани алгоритми за детерминизацију фази и тежинских аутомата (Improved algorithms for determinization of fuzzy and weighted automata) и да одобри њену јавну одбрану.

6

ФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА

ФАКУЛТЕТ  ОРГАНИЗАЦИОНИХ  НАУКА Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:

Више

My_P_Red_Bin_Zbir_Free

My_P_Red_Bin_Zbir_Free БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,

Више

Наставно-научно веће МАТЕМАТИЧКИ ФАКУЛТЕТ Универзитет у Београду На седници Наставно-научног већа Математичког факултета која је одржана дана 29. март

Наставно-научно веће МАТЕМАТИЧКИ ФАКУЛТЕТ Универзитет у Београду На седници Наставно-научног већа Математичког факултета која је одржана дана 29. март Наставно-научно веће МАТЕМАТИЧКИ ФАКУЛТЕТ Универзитет у Београду На седници Наставно-научног већа Математичког факултета која је одржана дана 29. марта 2013. г. одређени смо у Комисију за преглед и оцену

Више

DR DRAGOŚ CVETKOVIC DR SLOBODAN SIMIC DISKRETNA MATEMATIKA MATEMATIKA ZA KOMPJUTERSKE NAUKĘ DRUGO ISPRAYLJENO I PROSIRENO IZDANJE HMUJ

DR DRAGOŚ CVETKOVIC DR SLOBODAN SIMIC DISKRETNA MATEMATIKA MATEMATIKA ZA KOMPJUTERSKE NAUKĘ DRUGO ISPRAYLJENO I PROSIRENO IZDANJE HMUJ DR DRAGOŚ CVETKOVIC DR SLOBODAN SIMIC DISKRETNA MATEMATIKA MATEMATIKA ZA KOMPJUTERSKE NAUKĘ DRUGO ISPRAYLJENO I PROSIRENO IZDANJE HMUJ Sadrżaj Predgovor Iz predgovora prvoni izdanju knjige "Diskretne mateiuatićke

Више

НАСТАВНО-НАУЧНОМ ВЕЋУ

НАСТАВНО-НАУЧНОМ ВЕЋУ Технолошко-металуршки факултет Универзитет у Београду Карнегијева 4, Београд РЕЗИМЕ ИЗВЕШТАЈА О КАНДИДАТУ ЗА СТИЦАЊЕ НАУЧНОГ ЗВАЊА I Општи подаци о кандидату Име и презиме: Тања Ј. Николић Година рођења:

Више

P1.1 Analiza efikasnosti algoritama 1

P1.1 Analiza efikasnosti algoritama 1 Analiza efikasnosti algoritama I Asimptotske notacije Master metoda (teorema) 1 Asimptotske notacije (1/2) Služe za opis vremena izvršenja algoritma T(n) gde je n N veličina ulaznih podataka npr. br. elemenata

Више

08 RSA1

08 RSA1 Преглед ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције RSA алгоритам Биће објашњено: RSA алгоритам алгоритам прорачунски аспекти ефикасност коришћењем јавног кључа генерисање кључа сигурност проблем

Више

Matrice. Algebarske operacije s matricama. - Predavanje I

Matrice. Algebarske operacije s matricama. - Predavanje I Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,

Више

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6 УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ Мр БОШКА БОЖИЛОВИЋА I ПОДАЦИ О КОМИСИЈИ 1. Датум и орган који је именовао комисију Решење Декана Факултета

Више

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe 6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju

Више

My_P_Trigo_Zbir_Free

My_P_Trigo_Zbir_Free Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу

Више

UNIVERZITET U NIŠU PRIRODNO MATEMATIČKI FAKULTET DEPARTMAN ZA RAČUNARSKE NAUKE Algoritmi za determinizaciju i minimizaciju nedeterminističkih automata

UNIVERZITET U NIŠU PRIRODNO MATEMATIČKI FAKULTET DEPARTMAN ZA RAČUNARSKE NAUKE Algoritmi za determinizaciju i minimizaciju nedeterminističkih automata UNIVERZITET U NIŠU PRIRODNO MTEMTIČKI FKULTET DEPRTMN Z RČUNRSKE NUKE lgoritmi za determinizaciju i minimizaciju nedeterminističkih automata Master rad Student: Nemanja Vučković Mentor: Prof. dr. Miroslav

Више

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3 Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b

Више

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6 УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ -oбавезна садржина- свака рубрика мора бити попуњена (сви подаци уписују се у одговарајућу рубрику, а

Више

Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић

Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Драган Пејић, Бојан Вујичић, Небојша Пјевалица,

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

P2.1 Formalne gramatike

P2.1 Formalne gramatike Превођење Полазни језик? Одредишни језик 1 Превођење Полазни језик? Одредишни језик Како знање неког језика стиче и складишти човек, а како рачунар? 2 Два аспекта језика Синтакса Семантика значење То су

Више

Microsoft Word - KONACNI PRAVILNIK O NASTAVNOJ DELATNOSTI iz 2003 i sa izme–

Microsoft Word - KONACNI PRAVILNIK O NASTAVNOJ DELATNOSTI iz 2003 i sa izme– УНИВЕРЗИТЕТ У НИШУ МAШИНСКИ ФAКУЛТEТ П Р А В И Л Н И К О ДОКТОРСКИМ СТУДИЈАМА Н и ш, децембар 2007. гoдинe На основу Одредби Закона о високом образовању (Службени гласник РС број 76/2005), одредби Статута

Више

Техничко решење: Софтвер за симулацију стохастичког ортогоналног мерила сигнала, његовог интеграла и диференцијала Руководилац пројекта: Владимир Вуји

Техничко решење: Софтвер за симулацију стохастичког ортогоналног мерила сигнала, његовог интеграла и диференцијала Руководилац пројекта: Владимир Вуји Техничко решење: Софтвер за симулацију стохастичког ортогоналног мерила сигнала, његовог интеграла и диференцијала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Велибор

Више

Prilog 5 REZIME IZVEŠTAJA O KANDIDATU ZA STICANJE NAUČNOG ZVANJA I Opšti podaci o kandidatu: Ime i prezime: Katarina M. Banjanac Datum rođenja:

Prilog 5 REZIME IZVEŠTAJA O KANDIDATU ZA STICANJE NAUČNOG ZVANJA I Opšti podaci o kandidatu: Ime i prezime: Katarina M. Banjanac Datum rođenja: Prilog 5 REZIME IZVEŠTAJA O KANDIDATU ZA STICANJE NAUČNOG ZVANJA I Opšti podaci o kandidatu: Ime i prezime: Katarina M. Banjanac Datum rođenja: 10.12.1984. JMBG: 1012984775042 Naziv institucije u kojoj

Више

Прилог бр. 1. НАСТАВНО НАУЧНОМ /УМЈЕТНИЧКОМ ВИЈЕЋУ МАШИНСКОГ ФАКУЛТЕТА ИСТОЧНО САРАЈЕВО СЕНАТУ УНИВЕРЗИТЕТА У ИСТОЧНОМ САРАЈЕВУ Предмет: Извјештај ком

Прилог бр. 1. НАСТАВНО НАУЧНОМ /УМЈЕТНИЧКОМ ВИЈЕЋУ МАШИНСКОГ ФАКУЛТЕТА ИСТОЧНО САРАЈЕВО СЕНАТУ УНИВЕРЗИТЕТА У ИСТОЧНОМ САРАЈЕВУ Предмет: Извјештај ком Прилог бр. 1. НАСТАВНО НАУЧНОМ /УМЈЕТНИЧКОМ ВИЈЕЋУ МАШИНСКОГ ФАКУЛТЕТА ИСТОЧНО САРАЈЕВО СЕНАТУ УНИВЕРЗИТЕТА У ИСТОЧНОМ САРАЈЕВУ Предмет: Извјештај комисије о пријављеним кандидатима за избор у академско

Више

К О Н К У Р С

К О Н К У Р С ФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА Јове Илића 154 Телефони: 011/3950 800 Факс: 011/2461-221 E-mail: ds@fon.rs Интернет адреса: www.fon.bg.ac.rs СТУДИЈСКИ ПРОГРАМИ ЗА КОЈЕ СЕ КОНКУРС РАСПИСУЈЕ: Информациони

Више

Наставно-научном већу Математичког факултета Универзитета у Београду Одлуком Наставно-научног већа Математичког факултета у Београду донетом на седниц

Наставно-научном већу Математичког факултета Универзитета у Београду Одлуком Наставно-научног већа Математичког факултета у Београду донетом на седниц Наставно-научном већу Математичког факултета Универзитета у Београду Одлуком Наставно-научног већа Математичког факултета у Београду донетом на седници одржаној 22.09.2014. именовани смо у комисију за

Више

РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена ) Прва година: ПРВА ГОДИНА - сви сем информатике Име пр

РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена ) Прва година: ПРВА ГОДИНА - сви сем информатике Име пр РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена 23.01.2017.) Прва година: ПРВА ГОДИНА - сви сем информатике Име предмета Датум и термин одржавања писменог дела испита

Више

Microsoft PowerPoint - 03-Slozenost [Compatibility Mode]

Microsoft PowerPoint - 03-Slozenost [Compatibility Mode] Сложеност алгоритама (Програмирање 2, глава 3, глава 4-4.3) Проблем: класа задатака истог типа Велики број различитих (коректних) алгоритама Величина (димензија) проблема нпр. количина података које треба

Више

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6 УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА НОВИ САД ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ -oбавезна садржина- свака рубрика мора бити попуњена (сви подаци уписују се у одговарајућу рубрику,

Више

Tehnološko-metalurški fakultet,

Tehnološko-metalurški fakultet, Tehnološko-metalurški fakultet, Univerzitet u Beogradu Karnegijeva 4, Beograd REZIME IZVEŠTAJA O KANDIDATU O STICANJU NAUČNOG ZVANJA I. Opšti podaci o kandidatu Ime i prezime: Marijana (Miloš) Ponjavić

Више

DISKRETNA MATEMATIKA

DISKRETNA MATEMATIKA DISKRETNA MATEMATIKA Kombinatorika Permutacije, kombinacije, varijacije, binomna formula Ivana Milosavljević - 1 - 1. KOMBINATORIKA PRINCIPI PREBROJAVANJA Predmet kombinatorike je raspoređivanje elemenata

Више

Konstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun

Konstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun Konstrukcija i analiza algoritama Nina Radojičić februar 2018. 1 Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne funkcije od argumenta n iz skupa N prirodnih brojeva.

Више

Microsoft Word - IzvjestajPlakalovic

Microsoft Word - IzvjestajPlakalovic И З В Ј Е Ш Т А Ј КОМИСИЈЕ О ПРИЈАВЉЕНИМ КАНДИДАТИМА ЗА ИЗБОР У ЗВАЊЕ I ПОДАЦИ О КОНКУРСУ Конкурс објављен: 22. 7. 2015. у дневном листу Глас Српске Ужа научна/умјетничка област: Информационе науке и биоинформатика

Више

Microsoft Word - AIDA2kolokvijumRsmerResenja.doc

Microsoft Word - AIDA2kolokvijumRsmerResenja.doc Konstrukcija i analiza algoritama 2 (prvi kolokvijum, smer R) 1. a) Konstruisati AVL stablo od brojeva 100, 132, 134, 170, 180, 112, 188, 184, 181, 165 (2 poena) b) Konkatenacija je operacija nad dva skupa

Више

My_ST_FTNIspiti_Free

My_ST_FTNIspiti_Free ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити

Више

PowerPoint Presentation

PowerPoint Presentation Колоквијум # задатак подељен на 4 питања: теоријска практична пишу се програми, коначно решење се записује на папиру, кодови се архивирају преко сајта Инжењерски оптимизациони алгоритми /3 Проблем: NLP:

Више

ПОСЕБНИ УСЛОВИ КОНКУРСА ЗА УПИС СТУДЕНАТА У ПРВУ ГОДИНУ СТУДИЈСКИХ ПРОГРАМА МАСТЕР АКАДЕМСКИХ СТУДИЈА КОЈЕ РЕАЛИЗУЈЕ МАТЕМАТИЧКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА

ПОСЕБНИ УСЛОВИ КОНКУРСА ЗА УПИС СТУДЕНАТА У ПРВУ ГОДИНУ СТУДИЈСКИХ ПРОГРАМА МАСТЕР АКАДЕМСКИХ СТУДИЈА КОЈЕ РЕАЛИЗУЈЕ МАТЕМАТИЧКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА ПОСЕБНИ УСЛОВИ КОНКУРСА ЗА УПИС СТУДЕНАТА У ПРВУ ГОДИНУ СТУДИЈСКИХ ПРОГРАМА МАСТЕР АКАДЕМСКИХ СТУДИЈА КОЈЕ РЕАЛИЗУЈЕ МАТЕМАТИЧКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У БЕОГРАДУ ЗА ШКОЛСКУ 2019/20. ГОДИНУ Овим документом

Више

С А Ж Е Т А К ИЗВЕШТАЈА КОМИСИЈЕ O ПРИЈАВЉЕНИМ КАНДИДАТИМА ЗА ИЗБОР У ЗВАЊЕ I - О КОНКУРСУ Назив факултета: Maшински факултет, Београд Ужа научна, oдн

С А Ж Е Т А К ИЗВЕШТАЈА КОМИСИЈЕ O ПРИЈАВЉЕНИМ КАНДИДАТИМА ЗА ИЗБОР У ЗВАЊЕ I - О КОНКУРСУ Назив факултета: Maшински факултет, Београд Ужа научна, oдн С А Ж Е Т А К ИЗВЕШТАЈА КОМИСИЈЕ O ПРИЈАВЉЕНИМ КАНДИДАТИМА ЗА ИЗБОР У ЗВАЊЕ I - О КОНКУРСУ Назив факултета: Maшински факултет, Београд Ужа научна, oдносно уметничка област: Мотори Број кандидата који се

Више

Орт колоквијум

Орт колоквијум I колоквијум из Основа рачунарске технике I - надокнада СИ - 008/009 (10.05.009.) Р е ш е њ е Задатак 1 a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један,

Више

Skripte2013

Skripte2013 Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar

Више

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. 1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako

Више

UAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević

UAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture5. Vektorski prostori 2 5.1 Unutarnja i vanjska množenja Imamo dvije vrste algebarskih operacija, tzv. unutarnja

Више

Microsoft Word - O nekim klasicnim kvadratnim Diofantovim jednacinama.docx

Microsoft Word - O nekim klasicnim kvadratnim Diofantovim jednacinama.docx Универзитет у Београду Математички факултет О неким класичним квадратним Диофантовим једначинама Мастер рад ментор: Марко Радовановић студент: Ивана Фируловић Београд, 2017. Садржај Увод...2 1. Линеарне

Више

PowerPoint Presentation

PowerPoint Presentation Факултет организационих наука Центар за пословно одлучивање Системи за препоруку П8: Системи за препоруку Закључивање на основу случајева Системи за препоруку 2 Закључивање на основу случајева ПРОНАЂЕНО

Више

NAUČNO-NASTAVNOM VEĆU

NAUČNO-NASTAVNOM VEĆU НАУЧНО-НАСТАВНОМ ВЕЋУ МЕДИЦИНСКОГ ФАКУЛТЕТА У КРАГУЈЕВЦУ Комисија за припрему извештаја у саставу: 1. Проф. др Слободан Јанковић редовни професор Медицинског факултета у Крагујевцу, 2. Проф. др Милица

Више

Орт колоквијум

Орт колоквијум Задатак 1 I колоквијум из Основа рачунарске технике I - надокнада - 008/009 (16.05.009.) Р е ш е њ е a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један, лако

Више

ВИСОКА ШКОЛА СТРУКОВНИХ СТУДИЈA

ВИСОКА ШКОЛА СТРУКОВНИХ СТУДИЈA ВИСОКА ШКОЛА СТРУКОВНИХ СТУДИЈA ЗА ИНФОРМАЦИОНЕ И КОМУНИКАЦИОНЕ ТЕХНОЛОГИЈЕ Б Е О Г Р А Д П Р А В И Л Н И К О ИЗБОРУ У ЗВАЊА НАСТАВНИКА И САРАДНИКА Фебруар 2009. година ВИСОКА ШКОЛА СТРУКОВНИХ СТУДИЈА

Више

Рачунарска интелигенција

Рачунарска интелигенција Рачунарска интелигенција Генетско програмирање Александар Картељ kartelj@matf.bg.ac.rs Ови слајдови представљају прилагођење слајдова: A.E. Eiben, J.E. Smith, Introduction to Evolutionary computing: Genetic

Више

ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Адреса: Нови Сад, Трг Доситеја Обрадовића 3. Телефон: 021/ Факс: 021/ Студентска служба, телефон: 02

ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Адреса: Нови Сад, Трг Доситеја Обрадовића 3. Телефон: 021/ Факс: 021/ Студентска служба, телефон: 02 ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Адреса: 21000 Нови Сад, Трг Доситеја Обрадовића 3. Телефон: 021/455-630 Факс: 021/455-662 Студентска служба, телефон: 021-485-2711; 485-2712; 455-643 Жиро рачун: 840-1711666-19

Више

УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ

УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ МЕДИЦИНСКИ ФАКУЛТЕТ НАУЧНО-НАСТАВНОМ ВЕЋУ ПРЕДМЕТ: ИЗВЕШТАЈ КОМИСИЈЕ ЗА ОЦЕНУ НАУЧНЕ ЗАСНОВАНОСТИ ТЕМЕ ДОКТОРСКЕ ТЕЗЕ 1. Одлука Изборног Већа Медицинског факултета Универзитета

Више

Prof. dr. sc. Aleksandra Čižmešija, izv. prof., PMF MO, Sveučilište u Zagrebu Prof. dr. sc. Hrvoje Šikić, red. prof., PMF MO, Sveučilište u Zagrebu Pr

Prof. dr. sc. Aleksandra Čižmešija, izv. prof., PMF MO, Sveučilište u Zagrebu Prof. dr. sc. Hrvoje Šikić, red. prof., PMF MO, Sveučilište u Zagrebu Pr Prof. dr. sc. Aleksandra Čižmešija, izv. prof., PMF MO, Sveučilište u Zagrebu Prof. dr. sc. Hrvoje Šikić, red. prof., PMF MO, Sveučilište u Zagrebu Prof. dr. sc. Neven Elezović, red. prof., FER, Sveučilište

Више

Универзитет у Београду Електротехнички факултет ТАБЕЛА ЗА ОЦЕНУ ИСПУЊЕЊА УСЛОВА ЗА ПРВИ ИЗБОР У ЗВАЊЕВАНРЕДНОГ ПРОФЕСОРА Према Правилнику о избору у з

Универзитет у Београду Електротехнички факултет ТАБЕЛА ЗА ОЦЕНУ ИСПУЊЕЊА УСЛОВА ЗА ПРВИ ИЗБОР У ЗВАЊЕВАНРЕДНОГ ПРОФЕСОРА Према Правилнику о избору у з ТАБЕЛА ЗА ОЦЕНУ ИСПУЊЕЊА УСЛОВА ЗА ПРВИ ИЗБОР У ЗВАЊЕВАНРЕДНОГ ПРОФЕСОРА Према Правилнику о избору у звање наставника и сарадника Електротехничког факултета Универзитета у Београду, који је донет одлуком

Више

Konacne grupe, dizajni i kodovi

Konacne grupe, dizajni i kodovi Konačne grupe, dizajni i kodovi Andrea Švob (asvob@math.uniri.hr) 1. veljače 2011. Andrea Švob (asvob@math.uniri.hr) () Konačne grupe, dizajni i kodovi 1. veljače 2011. 1 / 36 J. Moori, Finite Groups,

Више

На основу чланова 65. став 1. Закона о високом образовању ( Сл. гласник РС бр. 88/2017, 27/18 др. закон и 73/18) и члана 43. Статута Електронског факу

На основу чланова 65. став 1. Закона о високом образовању ( Сл. гласник РС бр. 88/2017, 27/18 др. закон и 73/18) и члана 43. Статута Електронског факу На основу чланова 65. став 1. Закона о високом образовању ( Сл. гласник РС бр. 88/2017, 27/18 др. закон и 73/18) и члана 43. Статута Електронског факултета у Нишу, Наставно-научно веће Електронског факултета

Више

PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste

PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, 5.06.019. godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekstenzija se najčešće koristi za tekstualne datoteke? a)

Више

PowerPoint Presentation

PowerPoint Presentation Показатељи технолошког напретка Технолошки развој Резултира стварањем нових или побољшањем постојећих производа, процеса и услуга. Технолошки развој - део економског и друштвеног развоја. Научни и технолошки

Више

Наставно-научном већу Математичког факултета Универзитета у Београду На 305. седници Наставно-научног већа Математичког факултета Универзитета у Беогр

Наставно-научном већу Математичког факултета Универзитета у Београду На 305. седници Наставно-научног већа Математичког факултета Универзитета у Беогр Наставно-научном већу Математичког факултета Универзитета у Београду На 305. седници Наставно-научног већа Математичког факултета Универзитета у Београду одржаноj 25.06.2012. године, одређени смо за чланове

Више

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www. ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte

Више

UNIVERZITET U ISTOČNOM SARAJEVU

UNIVERZITET U ISTOČNOM SARAJEVU UNIVERZITET U ISTOČNOM SARAJEVU MEDICINSKI FAKULTET FOČA Na osnovu člana 248. Statuta Medicinskog fakulteta Univerziteta u Istočnom Sarajevu, a u vezi sa Zakonom o univerzitetu ( Sl. glasnik R.S broj:12/93,

Више

Paper Title (use style: paper title)

Paper Title (use style: paper title) Статистичка анализа коришћења електричне енергије која за последицу има примену повољнијег тарифног става Аутор: Марко Пантовић Факултет техничких наука, Чачак ИАС Техника и информатика, 08/09 e-mal адреса:

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski

Више

Microsoft Word - 1.Operacije i zakoni operacija

Microsoft Word - 1.Operacije i zakoni operacija 1. Operacije i zakoni operacija Neka je S neprazan skup. Operacija dužine n skupa S jeste svako preslikavanje : n n f S S ( S = S S S... S) Ako je n = 1, onda operaciju nazivamo unarna. ( f : S S ) Ako

Више

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno

Више

Magični trougao Model finansiranja Istraživački kapaciteti Doktorske studije Budva, Montenegro, September 2017 Jelena Starčević, PhD Ministry of

Magični trougao Model finansiranja Istraživački kapaciteti Doktorske studije Budva, Montenegro, September 2017 Jelena Starčević, PhD Ministry of Magični trougao Model finansiranja Istraživački kapaciteti Doktorske studije Budva, Montenegro, 25-26 September 2017 Jelena Starčević, PhD Ministry of Education and Culture of the Republic of Srpska j.starcevic@mp.vladars.net

Више

Veeeeeliki brojevi

Veeeeeliki brojevi Matematička gimnazija Nedelja informatike 3 12. decembar 2016. Uvod Postoji 10 tipova ljudi na svetu, oni koji razumeju binarni sistem, oni koji ne razumeju binarni sistem i oni koji nisu očekivali šalu

Више

STABILNOST SISTEMA

STABILNOST SISTEMA STABILNOST SISTEMA Najvaznija osobina sistema automatskog upravljanja je stabilnost. Generalni zahtev koji se postavlja pred projektanta jeste da projektovani i realizovani sistem automatskog upravljanja

Више

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan 1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2

Више

MAT-KOL (Banja Luka) XXIII (4)(2017), DOI: /МК Ž ISSN (o) ISSN (o) ЈЕДНА

MAT-KOL (Banja Luka) XXIII (4)(2017), DOI: /МК Ž ISSN (o) ISSN (o) ЈЕДНА MAT-KOL (Banja Luka) XXIII (4)(07) 9-35 http://www.mvbl.org/dmbl/dmbl.htm DOI: 0.75/МК7049Ž ISSN 0354-6969 (o) ISSN 986-588 (o) ЈЕДНА КЛАСА ХЕРОНОВИХ ТРОУГЛОВА БЕЗ ЦЕЛОБРОЈНИХ ВИСИНА Милан Живановић Висока

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija

Више

Microsoft Word - Pravilnik o izboru u zvanje nastavnika i saradnika mart 2018.doc

Microsoft Word - Pravilnik o izboru u zvanje nastavnika i saradnika mart 2018.doc На основу члана 73.-88. Закона о високом образовању ( Сл. гласник РС број 88/17) члана 121. Статута Високе пословно-техничке школе струковних студија у Ужицу, Наставно веће Школе на седници одржаној дана

Више

УНИВЕРЗИТЕТ У БЕОГРАДУ МАШИНСКИ ФАКУЛТЕТ Предмет: КОМПЈУТЕРСКА СИМУЛАЦИЈА И ВЕШТАЧКА ИНТЕЛИГЕНЦИЈА Задатак број: Лист/листова: 1/1 Задатак 5.1 Pостоје

УНИВЕРЗИТЕТ У БЕОГРАДУ МАШИНСКИ ФАКУЛТЕТ Предмет: КОМПЈУТЕРСКА СИМУЛАЦИЈА И ВЕШТАЧКА ИНТЕЛИГЕНЦИЈА Задатак број: Лист/листова: 1/1 Задатак 5.1 Pостоје Лист/листова: 1/1 Задатак 5.1 Pостоје софтвери за препознавање бар кодова који знатно олакшавају велики број операција које захтевају препознавање објеката. Слика 1: Приказ свих слова за које је ART-1

Више

Број: 768/2-3 Датум: На основу члана 64. став 11. и члана 65. став 7. Закона о високом образовању ( Сл. гл. РС бр. 76/05, 100/07, 97/08,

Број: 768/2-3 Датум: На основу члана 64. став 11. и члана 65. став 7. Закона о високом образовању ( Сл. гл. РС бр. 76/05, 100/07, 97/08, Број: 768/2-3 Датум: 22. 6. 2015. На основу члана 64. став 11. и члана 65. став 7. Закона о високом образовању ( Сл. гл. РС бр. 76/05, 100/07, 97/08, 44/10, 93/12, 89/13, 99/14 и 45/15 аутентично тумачење)

Више

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ - 11 ФИЛОЗОФСКИ ФАКУЛТЕТ ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ Кандидаткиња: Гордана Ристић Тема: Соматизми у немачк

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ - 11 ФИЛОЗОФСКИ ФАКУЛТЕТ ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ Кандидаткиња: Гордана Ристић Тема: Соматизми у немачк УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ - 11 ФИЛОЗОФСКИ ФАКУЛТЕТ ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ Кандидаткиња: Гордана Ристић Тема: Соматизми у немачкој и српској фразеологији (контрастивна истраживања)

Више

Избор у звање научни сарадник кандидаткиња: Бојана Илић

Избор у звање научни сарадник кандидаткиња: Бојана Илић 1. Биографски подаци Место и година рођења: Приједор, 1984 Основне студије: Физички факултет Универзитета у Београду, завршила 2013.године просек: 10,00 Докторске студије: Физички факултет Универзитета

Више

Matematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017.

Matematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017. Matematiqki fakultet Univerzitet u Beogradu 29. mart 2017. Matematiqki fakultet 2 Univerzitet u Beogradu Glava 1 Iracionalne jednaqine i nejednaqine 1.1 Teorijski uvod Pod iracionalnim jednaqinama podrazumevaju

Више

Osnovni pojmovi teorije verovatnoce

Osnovni pojmovi teorije verovatnoce Osnovni pojmovi teorije verovatnoće Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2019 Milan Merkle Osnovni pojmovi ETF Beograd 1 / 13 Verovatnoća i statistika:

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

Microsoft Word - ASIMPTOTE FUNKCIJA.doc

Microsoft Word - ASIMPTOTE FUNKCIJA.doc ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Више

УНИВЕРЗИТЕТ У БЕОГРАДУ ФАКУЛТЕТ ЗА СПЕЦИЈАЛНУ ЕДУКАЦИЈУ И РЕХАБИЛИТАЦИЈУ Ha основу члана 100. Закона о високом образовању ( Сл. Гласник, бр. 88/17) и

УНИВЕРЗИТЕТ У БЕОГРАДУ ФАКУЛТЕТ ЗА СПЕЦИЈАЛНУ ЕДУКАЦИЈУ И РЕХАБИЛИТАЦИЈУ Ha основу члана 100. Закона о високом образовању ( Сл. Гласник, бр. 88/17) и УНИВЕРЗИТЕТ У БЕОГРАДУ ФАКУЛТЕТ ЗА СПЕЦИЈАЛНУ ЕДУКАЦИЈУ И РЕХАБИЛИТАЦИЈУ Ha основу члана 100. Закона о високом образовању ( Сл. Гласник, бр. 88/17) и члана 69. став 2. Статута Универзитета у Београду -

Више

NAUČNO-STRUČNA KONFERENCIJA LOGOPEDA SRBIJE INOVATIVNI PRISTUPI U LOGOPEDIJI Nacionalni skup sa međunarodnim učešćem Organizator: Udruženje logopeda S

NAUČNO-STRUČNA KONFERENCIJA LOGOPEDA SRBIJE INOVATIVNI PRISTUPI U LOGOPEDIJI Nacionalni skup sa međunarodnim učešćem Organizator: Udruženje logopeda S NAUČNO-STRUČNA KONFERENCIJA LOGOPEDA SRBIJE INOVATIVNI PRISTUPI U LOGOPEDIJI Nacionalni skup sa međunarodnim učešćem Organizator: Udruženje logopeda Srbije Kralja Milutina 52, Beograd Datum održavanja:

Више

два сарадника

два сарадника УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 2 ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ОБРАЗАЦ ЗА ПИСАЊЕ ИЗВЕШТАЈА О ПРИЈАВЉЕНИМ КАНДИДАТИМА НА КОНКУРС ЗА ИЗБОР У ЗВАЊЕ САРАДНИКА УНИВЕРЗИТЕТА oбавезна садржина I ПОДАЦИ О КОНКУРСУ,

Више

Microsoft PowerPoint - Pokazatelji TP i stopa TP_ za studente [Compatibility Mode]

Microsoft PowerPoint - Pokazatelji TP i stopa TP_ za studente [Compatibility Mode] Показатељи технолошког напретка Технолошки развој Резултира стварањем новихили побољшањем постојећихпроизвода, процеса и услуга. Технолошки развој - део економског и друштвеног развоја. Научни и технолошки

Више

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6 УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ -oбавезна садржина- свака рубрика мора бити попуњена (сви подаци уписују се у одговарајућу рубрику, а

Више

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka II i III, Pravilnika o načinima, postupcima i elementima

Више

Mere slicnosti

Mere slicnosti Nenad Mitić Matematički fakultet nenad@matf.bg.ac.rs Kako odrediti sličnost/različitost, obrazaca, atributa, dogadjaja... Podaci različitog tipa i strukture Zavisnost od tipa, raspodele, dimenzionalnosti

Више

Dr. Senka Barudanović, doktor bioloških nauka, redovna profesorica Prirodnomatematičkog fakulteta Univerziteta u Sarajevu, uže naučne oblasti: Ekologi

Dr. Senka Barudanović, doktor bioloških nauka, redovna profesorica Prirodnomatematičkog fakulteta Univerziteta u Sarajevu, uže naučne oblasti: Ekologi Dr. Senka Barudanović, doktor bioloških nauka, redovna profesorica Prirodnomatematičkog fakulteta Univerziteta u Sarajevu, uže naučne oblasti: Ekologija i Botanika, predsjednica Dr. Edina Muratović,doktor

Више

Izvestaj Dejan Ecet

Izvestaj Dejan Ecet УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ I ПОДАЦИ О КОМИСИЈИ 1. Датум и орган који је именовао комисију Декан Факултета техничких наука, на основу

Више

Osnovi programiranja Beleške sa vežbi Smer Računarstvo i informatika Matematički fakultet, Beograd Jelena Tomašević i Sana Stojanović November 7, 2005

Osnovi programiranja Beleške sa vežbi Smer Računarstvo i informatika Matematički fakultet, Beograd Jelena Tomašević i Sana Stojanović November 7, 2005 Osnovi programiranja Beleške sa vežbi Smer Računarstvo i informatika Matematički fakultet, Beograd Jelena Tomašević i Sana Stojanović November 7, 2005 2 Sadržaj 1 5 1.1 Specifikacija sintakse programskih

Више

Programiranje 1 IEEE prikaz brojeva sažetak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2018, IEEE p

Programiranje 1 IEEE prikaz brojeva sažetak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2018, IEEE p Programiranje IEEE prikaz brojeva sažetak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog 208, IEEE prikaz brojeva sažetak p. /4 Sadržaj predavanja IEEE standard

Више

Нa основу члaнa 8

Нa основу члaнa 8 Нa основу члaнa 3. Зaкoнa o рaчунoвoдству и рeвизиjи Босне и Херцеговине ( Службeни глaсник БиХ, брoj 42/04), Стaтутa Кoмисиje зa рaчунoвoдствo и рeвизиjу Босне и Херцеговине (усаглашени пречишћени текст

Више

Microsoft Word - IvanaMihic.doc

Microsoft Word - IvanaMihic.doc УНИВЕРЗИТЕТ У НОВОМ САДУ ФИЛОЗОФСКИ ФАКУЛТЕТ ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ Мр Иване Михић Чиниоци укључивања оца у бригу о детету I ПОДАЦИ О КОМИСИЈИ 1. Датум и орган који је именовао комисију

Више

Орт колоквијум

Орт колоквијум II колоквијум из Основа рачунарске технике I - 27/28 (.6.28.) Р е ш е њ е Задатак На улазе x, x 2, x 3, x 4 комбинационе мреже, са излазом z, долази четворобитни BCD број. Ако број са улаза при дељењу

Више

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ - oбавезна садржина- свака рубрика мора бити попуњ

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ - oбавезна садржина- свака рубрика мора бити попуњ УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ - oбавезна садржина- свака рубрика мора бити попуњена (сви подаци уписују се у одговарајућу рубрику,

Више

nobrazac6 Nemanja Deretic

nobrazac6 Nemanja Deretic УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ -oбавезна садржина- свака рубрика мора бити попуњена (сви подаци уписују се у одговарајућу рубрику, а

Више

Microsoft Word - MATERIJAL ZA ROKIJA.doc

Microsoft Word - MATERIJAL ZA ROKIJA.doc Број: 03-270/2 Ниш, 09.06.2015. год. З А П И С Н И К са 8. седнице Изборног већа Факултета заштите на раду у Нишу одржане 09.06.2015. године, са почетком у 12 часова у Клубу радника Факултета заштите на

Више

1

1 Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N

Више

УПУТСТВО ЗА ПИСАЊЕ РЕФЕРАТА

УПУТСТВО ЗА ПИСАЊЕ РЕФЕРАТА С А Ж Е Т А К ИЗВЕШТАЈА КОМИСИЈЕ O ПРИЈАВЉЕНИМ КАНДИДАТИМА ЗА ИЗБОР У ЗВАЊЕ I - О КОНКУРСУ Назив факултета: Машински факултет Ужа научна, oдносно уметничка област: Термомеханика Број кандидата који се

Више

С А Ж Е Т А К

С А Ж Е Т А К С А Ж Е Т А К ИЗВЕШТАЈА КОМИСИЈЕ O ПРИЈАВЉЕНИМ КАНДИДАТИМА ЗА ИЗБОР У ЗВАЊЕ I - О КОНКУРСУ Назив факултета: Машински факултет у Београду Ужа научна, oдносно уметничка област: Механика флуида Број кандидата

Више

Razvoj programa, Code::Blocks, struktura programa, printf, scanf, konverzioni karakteri predavač: Nadežda Jakšić

Razvoj programa, Code::Blocks, struktura programa, printf, scanf, konverzioni karakteri predavač: Nadežda Jakšić Razvoj programa, Code::Blocks, struktura programa, printf, scanf, konverzioni karakteri predavač: Nadežda Jakšić projektni zadatak projektovanje programa (algoritmi) pisanje programskog koda, izvorni kod,

Више

ИЗБОРНОМ ВЕЋУ ЕЛЕКТРОНСКОГ ФАКУЛТЕТА У НИШУ На основу одлуке Изборног већа Електронског факултета у Нишу број 07/01-001/ од године о

ИЗБОРНОМ ВЕЋУ ЕЛЕКТРОНСКОГ ФАКУЛТЕТА У НИШУ На основу одлуке Изборног већа Електронског факултета у Нишу број 07/01-001/ од године о ИЗБОРНОМ ВЕЋУ ЕЛЕКТРОНСКОГ ФАКУЛТЕТА У НИШУ На основу одлуке Изборног већа Електронског факултета у Нишу број 07/01-001/11-009 од 05.11.2010. године одређена је Комисија за писање извештаја о кандидатима

Више

Classroom Expectations

Classroom Expectations АТ-8: Терминирање производно-технолошких ентитета Проф. др Зоран Миљковић Садржај Пројектовање флексибилних ; Математички модел за оптимизацију флексибилних ; Генетички алгоритми у оптимизацији флексибилних

Више