Programiranje 1 IEEE prikaz brojeva sažetak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2018, IEEE p

Величина: px
Почињати приказ од странице:

Download "Programiranje 1 IEEE prikaz brojeva sažetak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2018, IEEE p"

Транскрипт

1 Programiranje IEEE prikaz brojeva sažetak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog 208, IEEE prikaz brojeva sažetak p. /4

2 Sadržaj predavanja IEEE standard za prikaz realnih brojeva u računalu (tzv. floating point standard): IEEE standard tip single (binary32), IEEE standard tip double (binary64), IEEE standard tip extended. Prog 208, IEEE prikaz brojeva sažetak p. 2/4

3 Prikaz realnih brojeva u računalu IEEE standard Prog 208, IEEE prikaz brojeva sažetak p. 3/4

4 Stvarni prikaz realnih brojeva IEEE 754 Stvarni prikaz realnih brojeva ima tri dijela i svaki od njih ima svoju duljinu broj bitova predvidenih za prikaz tog dijela. predznak s uvijek zauzima jedan bit, i to najviši; karakteristika k zauzima sljedećih w bitova (w = engl. width, širina pomaknutog eksponenta); signifikand m zauzima sljedećih t bitova (t = engl. trailing, završni ili razlomljeni dio od m). Po starom standardu ako se pamti vodeći (cjelobrojni) bit mantise, on je prvi (vodeći) u m, a duljina je t+. Još se koristi i standardna oznaka preciznost p := t+ to je ukupni broj vodećih značajnih bitova cijele mantise. Prog 208, IEEE prikaz brojeva sažetak p. 4/4

5 Stvarni prikaz realnih brojeva IEEE 754 Karakteristika k se interpretira kao cijeli broj bez predznaka, tako da je k {0,...,2 w }. Rubne vrijednosti za k označavaju tzv. posebna stanja: k = 0 nula i denormalizirani brojevi, k = 2 w beskonačno (Inf) i nije broj (NaN). Sve ostale vrijednosti k {,...,2 w 2} koriste se za prikaz normaliziranih brojeva različitih od nule. Veza izmedu karakteristike k i stvarnog eksponenta e je: k = e+bias, bias = 2 w. Dakle, dozvoljeni eksponenti e moraju biti izmedu e min = (2 w 2) i e max = 2 w. Prog 208, IEEE prikaz brojeva sažetak p. 5/4

6 Standardni tipovi realnih brojeva IEEE 754 Novi standard IEEE standard ima sljedeće tipove za prikaz realnih brojeva: ime tipa binary32 binary64 binary28 duljina u bitovima t = w = 8 5 u = 2 p u raspon brojeva 0 ±38 0 ±308 0 ±4932 Broj u je tzv. jedinična greška zaokruživanja (v. malo kasnije). Najveći tip binary28 još uvijek ne postoji u većini procesora. Prog 208, IEEE prikaz brojeva sažetak p. 6/4

7 Standardni tipovi realnih brojeva extended Većina PC procesora još uvijek ima posebni dio tzv. FPU (engl. Floating Point Unit). On stvarno koristi tip extended iz starog standarda, koji odgovara tipu extended binary64 u novom IEEE standardu. Dio primjera koje ćete vidjeti napravljen je baš u tom tipu! ime tipa extended duljina u bitovima 80 t+ = 63+ w = 5 u = 2 p u raspon brojeva 0 ±4932 Prog 208, IEEE prikaz brojeva sažetak p. 7/4

8 Oznake Oznake: Crveno duljina odgovarajućeg polja u bitovima, bitove brojimo od 0, zdesna nalijevo (kao i obično), s predznak: 0 za pozitivan broj, za negativan broj, k karakteristika, m mantisa (signifikand). s w k t m Najznačajniji bit u odgovarajućem polju je najljeviji, a najmanje značajan bit je najdesniji. Prog 208, IEEE prikaz brojeva sažetak p. 8/4

9 Stvarni prikaz tipa single (binary32) Najkraći realni tip je tzv. realni broj jednostruke točnosti. U C-u se taj tip zove float. Savjet: ne koristiti u praksi! On ima sljedeća svojstva: duljina: 4 byte-a (32 bita), podijeljen u tri polja. s 8 k 23 m u mantisi se ne pamti vodeća jedinica, ako je broj normaliziran, stvarni eksponent e broja, e { 26,...,27}, karakteristika k = e+27, tako da je k {,...,254}, karakteristike k = 0 i k = 255 koriste se za posebna stanja. Prog 208, IEEE prikaz brojeva sažetak p. 9/4

10 Prikaz brojeva jednostruke točnosti sažetak IEEE tip single = float u C-u: s 8 k 23 m Vrijednost broja je ( ) s 2 (k 27) (.m) ako je 0 < k < 255, ( ) s 2 ( 26) (0.m) ako je k = 0 i m 0, v = ( ) s 0 ako je k = 0 i m = 0, ( ) s Inf ako je k = 255 i m = 0, NaN ako je k = 255 i m 0. Prog 208, IEEE prikaz brojeva sažetak p. 0/4

11 Stvarni prikaz tipa double (binary64) Srednji realni tip je tzv. realni broj dvostruke točnosti. U C-u se taj tip zove double. Savjet: njega treba koristiti! On ima sljedeća svojstva: Duljina: 8 byte-a (64 bita), podijeljen u tri polja. s k 52 m u mantisi se ne pamti vodeća jedinica, ako je broj normaliziran, stvarni eksponent e broja, e { 022,...,023}, karakteristika k = e+023, tako da je k {,...,2046}, karakteristike k = 0 i k = 2047 posebna stanja. Prog 208, IEEE prikaz brojeva sažetak p. /4

12 Prikaz brojeva dvostruke točnosti sažetak IEEE tip double = double u C-u: s k 52 m Vrijednost broja je ( ) s 2 (k 023) (.m) ako je 0 < k < 2047, ( ) s 2 ( 022) (0.m) ako je k = 0 i m 0, v = ( ) s 0 ako je k = 0 i m = 0, ( ) s Inf ako je k = 2047 i m = 0, NaN ako je k = 2047 i m 0. Prog 208, IEEE prikaz brojeva sažetak p. 2/4

13 Tip extended Stvarno računanje (na IA 32) se obično radi u proširenoj točnosti. U C-u je taj tip možda dohvatljiv kao long double. On ima sljedeća svojstva: Duljina: 0 byte-a (80 bita), podijeljen u četiri polja s k i m u mantisi se pamti vodeći bit i mantise, stvarni eksponent e broja, e { 6382,...,6383}, karakteristika k = e+6383, tako da je k {,...,32766}, karakteristike k = 0 i k = posebna stanja. Prog 208, IEEE prikaz brojeva sažetak p. 3/4

14 Prikaz brojeva proširene točnosti sažetak IEEE tip extended: s 5 k i 63 m s tim da je i = 0 k = 0 (tu je redundantnost u prikazu). Vrijednost broja je ( ) s 2 (k 6383) (.m) ako je 0 < k < 32767, ( ) s 2 ( 6382) (0.m) ako je k = 0 i m 0, v = ( ) s 0 ako je k = 0 i m = 0, ( ) s Inf ako je k = i m = 0, NaN ako je k = i m 0. Prog 208, IEEE prikaz brojeva sažetak p. 4/4

Numerička matematika 1. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 1. pre

Numerička matematika 1. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 1. pre Numerička matematika 1. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 1. predavanje dodatak p. 1/102 Sadržaj predavanja dodatka

Више

Programiranje 2 0. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 0. predavanje p. 1/4

Programiranje 2 0. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 0. predavanje p. 1/4 Programiranje 2 0. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 0. predavanje p. 1/48 Sadržaj predavanja Ponavljanje onog dijela C-a koji

Више

Numerička matematika 1. predavanje Saša Singer web.math.hr/~singer PMF Matematički odjel, Zagreb NumMat 2010, 1. predavanje p.1/133

Numerička matematika 1. predavanje Saša Singer web.math.hr/~singer PMF Matematički odjel, Zagreb NumMat 2010, 1. predavanje p.1/133 Numerička matematika 1. predavanje Saša Singer singer@math.hr web.math.hr/~singer PMF Matematički odjel, Zagreb NumMat 2010, 1. predavanje p.1/133 Dobar dan, dobro došli NumMat 2010, 1. predavanje p.2/133

Више

Programiranje 1 3. predavanje prošireno Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2018, 3. predava

Programiranje 1 3. predavanje prošireno Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2018, 3. predava Programiranje 1 3. predavanje prošireno Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2018, 3. predavanje prošireno p. 1/120 Sadržaj proširenog predavanja

Више

Programiranje 1 3. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2017, 3. predavanje p. 1/1

Programiranje 1 3. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2017, 3. predavanje p. 1/1 Programiranje 1 3. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2017, 3. predavanje p. 1/132 Sadržaj predavanja Osnovni tipovi podataka u računalu

Више

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p Numerička matematika 11. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. predavanje dodatak p. 1/46 Sadržaj predavanja dodatka

Више

Razvoj programa, Code::Blocks, struktura programa, printf, scanf, konverzioni karakteri predavač: Nadežda Jakšić

Razvoj programa, Code::Blocks, struktura programa, printf, scanf, konverzioni karakteri predavač: Nadežda Jakšić Razvoj programa, Code::Blocks, struktura programa, printf, scanf, konverzioni karakteri predavač: Nadežda Jakšić projektni zadatak projektovanje programa (algoritmi) pisanje programskog koda, izvorni kod,

Више

Uvod u računarstvo 2+2

Uvod u računarstvo 2+2 Ulaz i izlaz podataka Ulaz i izlaz podataka Nakon odslušanog bit ćete u stanju: navesti sintaksu naredbi za unos/ispis znakova znakovnih nizova cijelih brojeva realnih brojeva jednostruke i dvostruke preciznosti

Више

PASCAL UVOD 2 II razred gimnazije

PASCAL UVOD 2 II razred gimnazije PASCAL UVOD 2 II razred gimnazije Upis-ispis 1. Upis Read(a,b); --u jednom redu Readln(a,b); -- nakon upisa prelazi se u novi red 2. Ispis Write(a,b); -- u jednom redu Writeln(a,b); --nakon ispisa prelazi

Више

Programiranje 2 7. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 7. predavanje p. 1/7

Programiranje 2 7. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 7. predavanje p. 1/7 Programiranje 2 7. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 7. predavanje p. 1/75 Sadržaj predavanja Tipovi i složene deklaracije:

Више

Tutoring System for Distance Learning of Java Programming Language

Tutoring System for Distance Learning of Java Programming Language Deklaracija promenljivih Inicijalizacija promenljivih Deklaracija promenljive obuhvata: dodelu simboličkog imena promenljivoj i određivanje tipa promenljive (tip određuje koja će vrsta memorijskog registra

Више

Oblikovanje i analiza algoritama 5. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb OAA 2017, 5. pr

Oblikovanje i analiza algoritama 5. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb OAA 2017, 5. pr Oblikovanje i analiza algoritama 5. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb OAA 2017, 5. predavanje p. 1/68 Sadržaj predavanja Nehomogene rekurzije

Више

Programiranje 1 9. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2018, 9. predavanje p. 1/6

Programiranje 1 9. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2018, 9. predavanje p. 1/6 Programiranje 1 9. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2018, 9. predavanje p. 1/60 Sadržaj predavanja Osnovni algoritmi na cijelim brojevima:

Више

Microsoft PowerPoint - Bitovi [Compatibility Mode]

Microsoft PowerPoint - Bitovi [Compatibility Mode] Оператори над битовима (Јаничић, Марић: Програмирање 2, тачка 5.6) Оператори за рад са појединачним битовима Само на целобројне аргументе: ~ битовска негација & битовска конјункција (и) битовска (инклузивна)

Више

Microsoft PowerPoint - MR - Vjezbe - 03.ppt [Compatibility Mode]

Microsoft PowerPoint - MR - Vjezbe - 03.ppt [Compatibility Mode] Sveučilište u Zagrebu PMF Matematički odsjek Mreže računala Vježbe 03 Zvonimir Bujanović Slaven Kožić Vinko Petričević Mrežno programiranje: SocketAPI Programiramo u aplikacijskom sloju, za ostale se brinu

Више

INF INFORMATIKA INF.27.HR.R.K1.20 INF D-S INF D-S027.indd :50:41

INF INFORMATIKA INF.27.HR.R.K1.20 INF D-S INF D-S027.indd :50:41 INF INFORMATIKA INF.7.HR.R.K..indd 7.7.6. 3:5:4 Prazna stranica 99.indd 7.7.6. 3:5:4 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

ALIP1_udzb_2019.indb

ALIP1_udzb_2019.indb Razmislimo Kako u memoriji računala prikazujemo tekst, brojeve, slike? Gdje se spremaju svi ti podatci? Kako uopće izgleda memorija računala i koji ju elektronički sklopovi čine? Kako biste znali odgovoriti

Више

PowerPoint Presentation

PowerPoint Presentation Programski jezici i strukture podataka UVOD Izvođači nastave Srđan Popov (JUG 215) Petar Marić (JUG 105) Milena Počuča (JUG 215) Milica Milutinović (JUG 215) Termini konsultacija naknadno Cilj vežbi Sticanje

Више

Uvod u računarstvo 2+2

Uvod u računarstvo 2+2 Pokazivači Pointeri Definicija pokazivača Pokazivač na tip je varijabla koja sadrži adresu varijable tipa tip. Definicija pokazivača: mem_klasa tip * p_var; Primjer: static int * pi; double *px; char*

Више

Programiranje 1 5. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2018, 5. predavanj

Programiranje 1 5. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2018, 5. predavanj Programiranje 1 5. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2018, 5. predavanje dodatak p. 1/60 Sadržaj predavanja dodatka Primjeri

Више

070-ALIP2-udzbenik.indb

070-ALIP2-udzbenik.indb 0. U uvodnom ćemo poglavlju ponoviti osnove programskog jezika C s kojima smo se susreli u. razredu. U kratkom pregledu navedeni su operatori (aritmetički, relacijski i logički), neke od funkcija iz biblioteka

Више

Nastavna cjelina: 1. Jezik računala Kataloška tema: 1.1. Bit 1.2. Brojevi zapisani četvorkom bitova Nastavna jedinica: 1.1. Bit   1.2. Brojevi zapisan

Nastavna cjelina: 1. Jezik računala Kataloška tema: 1.1. Bit 1.2. Brojevi zapisani četvorkom bitova Nastavna jedinica: 1.1. Bit   1.2. Brojevi zapisan Nastavna cjelina: 1. Osnove IKT-a Kataloška tema: 1.6. Paralelni i slijedni ulazno-izlazni pristupi računala 1.7. Svojstva računala Unutar računala podatci su prikazani električnim digitalnim signalima

Више

2015_k2_z12.dvi

2015_k2_z12.dvi OBLIKOVANJE I ANALIZA ALGORITAMA 2. kolokvij 27. 1. 2016. Skice rješenja prva dva zadatka 1. (20) Zadano je n poslova. Svaki posao je zadan kao vremenski interval realnih brojeva, P i = [p i,k i ],zai

Више

Algoritmi i arhitekture DSP I

Algoritmi i arhitekture DSP I Univerzitet u Novom Sadu Fakultet Tehničkih Nauka Katedra za računarsku tehniku i međuračunarske komunikacije Algoritmi i arhitekture DSP I INTERNA ORGANIACIJA DIGITALNOG PROCESORA A OBRADU SIGNALA INTERNA

Више

Računarski praktikum I - Vježbe 03 - Implementacija strukture string

Računarski praktikum I - Vježbe 03 - Implementacija strukture string Prirodoslovno-matematički fakultet Matematički odsjek Sveučilište u Zagrebu RAČUNARSKI PRAKTIKUM I Vježbe 03 - Implementacija strukture string v2018/2019. Sastavio: Zvonimir Bujanović Stringovi u C-u String

Више

Tutoring System for Distance Learning of Java Programming Language

Tutoring System for Distance Learning of Java Programming Language Niz (array) Nizovi Niz je lista elemenata istog tipa sa zajedničkim imenom. Redosled elemenata u nizovnoj strukturi je bitan. Konkretnom elementu niza pristupa se preko zajedničkog imena niza i konkretne

Више

CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup priro

CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup priro CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup prirodnih brojeva? 4.) Pripada li 0 skupu prirodnih brojeva?

Више

My_P_Red_Bin_Zbir_Free

My_P_Red_Bin_Zbir_Free БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,

Више

Tutoring System for Distance Learning of Java Programming Language

Tutoring System for Distance Learning of Java Programming Language Uvod u programiranje dr Ninoslava Savić Predavanja (3) sreda: 11:15 13:50 Učionica 16 Konsultacije sreda: 15 17 h Kabinet 43 Uvod u programiranje Fond časova: 3+3 Broj ESPB: 7 Ocena znanja (max. broj poena

Више

PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije

PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije korake. Uz dobro razrađen algoritam neku radnju ćemo

Више

Newtonova metoda za rješavanje nelinearne jednadžbe f(x)=0

Newtonova metoda za rješavanje nelinearne jednadžbe f(x)=0 za rješavanje nelinearne jednadžbe f (x) = 0 Ime Prezime 1, Ime Prezime 2 Odjel za matematiku Sveučilište u Osijeku Seminarski rad iz Matematičkog praktikuma Ime Prezime 1, Ime Prezime 2 za rješavanje

Више

Logičke izjave i logičke funkcije

Logičke izjave i logičke funkcije Logičke izjave i logičke funkcije Građa računala, prijenos podataka u računalu Što su logičke izjave? Logička izjava je tvrdnja koja može biti istinita (True) ili lažna (False). Ako je u logičkoj izjavi

Више

PROMENLJIVE, TIPOVI PROMENLJIVIH

PROMENLJIVE, TIPOVI PROMENLJIVIH PROMENLJIVE, TIPOVI PROMENLJIVIH Šta je promenljiva? To je objekat jezika koji ima ime i kome se mogu dodeljivati vrednosti. Svakoj promenljivoj se dodeljuje registar (memorijska lokacija) operativne memorije

Више

Uvod u računarstvo 2+2

Uvod u računarstvo 2+2 Programiranje 2 doc.dr.sc. Goranka Nogo PMF Matematički odsjek, Zagreb Kontakt ured: 228, drugi kat e-mail: nogo@math.hr konzultacije: četvrtak, 12:00-14:00 petak, 11:00-12:00 neki drugi termin, uz prethodni

Више

Programiranje predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2016, 10. predavanje p. 1

Programiranje predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2016, 10. predavanje p. 1 Programiranje 1 10. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2016, 10. predavanje p. 1/95 Sadržaj predavanja Funkcije: Definicija funkcije.

Више

Konverzije, operatori, matematičke funkcije predavač: Nadežda Jakšić

Konverzije, operatori, matematičke funkcije predavač: Nadežda Jakšić Konverzije, operatori, matematičke funkcije predavač: Nadežda Jakšić 1. temperatura u stepenima Celzijusa i stepene Farenhajta tf=1.8*tc+32 2. pretvoriti inče u centimetre 1 inč=2.54cm 3. vreme učitano

Више

Osnovi programiranja Beleške sa vežbi Smer Računarstvo i informatika Matematički fakultet, Beograd Jelena Tomašević i Sana Stojanović November 7, 2005

Osnovi programiranja Beleške sa vežbi Smer Računarstvo i informatika Matematički fakultet, Beograd Jelena Tomašević i Sana Stojanović November 7, 2005 Osnovi programiranja Beleške sa vežbi Smer Računarstvo i informatika Matematički fakultet, Beograd Jelena Tomašević i Sana Stojanović November 7, 2005 2 Sadržaj 1 5 1.1 Specifikacija sintakse programskih

Више

STUDIJA SLUČAJA: Konsolidacija informatičkog sustava Grada Raba siječanj, Informacijske tehnologije

STUDIJA SLUČAJA: Konsolidacija informatičkog sustava Grada Raba siječanj, Informacijske tehnologije STUDIJA SLUČAJA: Konsolidacija informatičkog sustava Grada Raba siječanj, 2017. Informacijske tehnologije Studija slučaja (Case study) Informatički sustav Grada Raba sastoji se od 1 fizičkog poslužitelja

Више

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. 1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski

Више

Programiranje 2 1. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 1. predavanje p. 1/7

Programiranje 2 1. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 1. predavanje p. 1/7 Programiranje 2 1. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog2 2019, 1. predavanje p. 1/75 Dobar dan, dobro došli Prog2 2019, 1. predavanje

Више

Matrice. Algebarske operacije s matricama. - Predavanje I

Matrice. Algebarske operacije s matricama. - Predavanje I Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,

Више

Oblikovanje i analiza algoritama 4. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb OAA 2017, 4. pr

Oblikovanje i analiza algoritama 4. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb OAA 2017, 4. pr Oblikovanje i analiza algoritama 4. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb OAA 2017, 4. predavanje p. 1/69 Sadržaj predavanja Složenost u praksi

Више

UDŽBENIK 2. dio

UDŽBENIK 2. dio UDŽBENIK 2. dio Pročitaj pažljivo Primjer 1. i Primjer 2. Ova dva primjera bi te trebala uvjeriti u potrebu za uvo - denjem još jedne vrste brojeva. Primjer 1. Živa u termometru pokazivala je temperaturu

Више

0255_Uvod.p65

0255_Uvod.p65 1Skupovi brojeva Skup prirodnih brojeva Zbrajanje prirodnih brojeva Množenje prirodnih brojeva U košari ima 12 jaja. U drugoj košari nedostaju tri jabuke da bi bila puna, a treća je prazna. Pozitivni,

Више

Programiranje 1 drugi kolokvij, 2. veljače Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje,

Programiranje 1 drugi kolokvij, 2. veljače Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, te službeni podsjetnik. Kalkulatori, mobiteli, razne neslužbene tablice, papiri i sl., nisu dozvoljeni! Sva rješenja napišite

Више

Microsoft Word - ASIMPTOTE FUNKCIJE.doc

Microsoft Word - ASIMPTOTE FUNKCIJE.doc ASIMPTOTE FUNKCIJE (PONAŠANJE FUNKCIJE NA KRAJEVIMA OBLASTI DEFINISANOSTI) Ovo je jedna od najznačajnijih tačaka u ispitivanju toka funkcije. Neki profesori zahtevaju da se asimptote rade kao. tačka u

Више

Programiranje 2 popravni kolokvij, 15. lipnja Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanj

Programiranje 2 popravni kolokvij, 15. lipnja Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanj Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, te službeni šalabahter. Kalkulatori, mobiteli, razne neslužbene tablice, papiri i sl., nisu dozvoljeni! Sva rješenja napišite

Више

Sveučilište u Zagrebu PMF Matematički odsjek Mreže računala Vježbe 10 Zvonimir Bujanović Luka Grubišić Vinko Petričević

Sveučilište u Zagrebu PMF Matematički odsjek Mreže računala Vježbe 10 Zvonimir Bujanović Luka Grubišić Vinko Petričević Sveučilište u Zagrebu PMF Matematički odsjek Mreže računala Vježbe 10 Zvonimir Bujanović Luka Grubišić Vinko Petričević JavaScript JavaScript je programski jezik prvenstveno namijenjen za davanje dinamičnosti

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je Verovatnoća - kolokvijum 17. decembar 2016. 1. Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je 0.8. Ako je ispit težak, verovatnoća da se prvo pitanje

Више

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe 6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju

Више

Рачунарска интелигенција

Рачунарска интелигенција Рачунарска интелигенција Генетско програмирање Александар Картељ kartelj@matf.bg.ac.rs Ови слајдови представљају прилагођење слајдова: A.E. Eiben, J.E. Smith, Introduction to Evolutionary computing: Genetic

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza

Више

AR2019

AR2019 ARHITEKTURA RAČUNARA (pregled principa i evolucije) Miroslav Hajduković Žarko Živanov NOVI SAD, 2019. PREDGOVOR Cilj ove knjige je da stvori funkcionalno zaokruženu sliku o radu računara. Zbog toga je

Више

MathFest 2016 Krapinsko zagorske županije 29. travnja Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje

MathFest 2016 Krapinsko zagorske županije 29. travnja Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje MathFest 2016 Krapinsko zagorske županije 29. travnja 2016. Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje 90 minuta. Zadatci (njih 32) podijeljeni su u dvije

Више

Maksimalni protok kroz mrežu - Ford-Fulkerson, Edmonds-Karp

Maksimalni protok kroz mrežu - Ford-Fulkerson, Edmonds-Karp Maksimalni protok kroz mrežu - Ford-Fulkerson, Edmonds-Karp PMF-MO Seminar iz kolegija Oblikovanje i analiza algoritama 22.1.2019. mrežu - Ford-Fulkerson, Edmonds-Karp 22.1.2019. 1 / 35 Uvod - definicije

Више

Microsoft Word - 02 Elementi programskog jezika Pascal

Microsoft Word - 02 Elementi programskog jezika Pascal Elementi programskog jezika Pascal Osnovni elementi jezika Osnovni simboli U programskom jeziku Pascal sve konstrukcije se grade od skupa osnovnih simbola jezika koji čine slova, cifre i specijalni znaci.

Више

2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f (

2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f ( 2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8 2 A) (f () M) ; ome dena odozdol ako postoji m 2 R takav da je

Више

Microsoft Word - 11 Pokazivaci

Microsoft Word - 11 Pokazivaci Pokazivači U dosadašnjem radu smo imali prilike da koristimo promenljive koje smo deklarisali na početku nekog bloka. Prilikom deklaracije promenljiva dobija jedinstveni naziv i odgovarajući prostor u

Више

s2.dvi

s2.dvi 1. Skup kompleksnih brojeva 1. Skupovibrojeva.... Skup kompleksnih brojeva................................. 6. Zbrajanje i množenje kompleksnih brojeva..................... 9 4. Kompleksno konjugirani

Више

OSNOVNA ŠKOLA, VI RAZRED MATEMATIKA

OSNOVNA ŠKOLA, VI RAZRED MATEMATIKA OSNOVNA ŠKOLA, VI RAZRED MATEMATIKA UPUTSTVO ZA RAD Drage učenice i učenici, Čestitamo! Uspjeli ste da dođete na državno takmičenje iz matematike i samim tim ste već napravili veliki uspjeh Zato zadatke

Више

Slide 1

Slide 1 1 MATEMATIČKI MODELI EFIKASNOSTI 3/21/2019 Gordana Savić, Milan Martić, Milena Popović 2 Informacije o predmetu Nastavnici Pravila polaganja Sadržaj predmeta Literatura Podsećanje Linearno programiranje

Више

Microsoft Word - Mat-1---inicijalni testovi--gimnazija

Microsoft Word - Mat-1---inicijalni testovi--gimnazija Inicijalni test BR. 11 za PRVI RAZRED za sve gimnazije i jače tehničke škole 1... Dva radnika okopat će polje za šest dana. Koliko će trebati radnika da se polje okopa za dva dana?? Izračunaj ( ) a) x

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

Prikaz slike na monitoru i pisaču

Prikaz slike na monitoru i pisaču CRT monitori s katodnom cijevi i LCD monitori na bazi tekućih kristala koji su gotovo istisnuli iz upotrebe prethodno navedene. LED monitori- Light Emitting Diode, zasniva se na elektrodama i diodama koje

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,

Више

TIMEK katalog.FH11

TIMEK katalog.FH11 PRIVEZNICE OD ÈELIÈNE UŽADI Priveznice izraðene od èeliène užadi su namijenjene za privezivanje, vuèu i prijenos tereta kao krajnji element bilo kojeg transportnog sredstva. Priveznica (braga) se najèešæe

Више

2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f (

2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f ( 2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f (x) M) ; ome dena odozdol ako postoji m 2 R takav da

Више

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka II i III, Pravilnika o načinima, postupcima i elementima

Више

Državno natjecanje / Osnove informatike Srednje škole Zadaci U sljedećim pitanjima na odgovore odgovaraš upisivanjem slova koji se nalazi ispred

Državno natjecanje / Osnove informatike Srednje škole Zadaci U sljedećim pitanjima na odgovore odgovaraš upisivanjem slova koji se nalazi ispred Zadaci. 8. U sljedećim pitanjima na odgovore odgovaraš upisivanjem slova koji se nalazi ispred točnog odgovora, u za to predviđen prostor. Odgovor Ako želimo stvoriti i pohraniti sliku, ali tako da promjenom

Више

Računarski praktikum I - Vježbe 01 - Uvod

Računarski praktikum I - Vježbe 01 - Uvod Prirodoslovno-matematički fakultet Matematički odsjek Sveučilište u Zagrebu RAČUNARSKI PRAKTIKUM I Vježbe 01 - Uvod v2018/2019. Sastavio: Zvonimir Bujanović Gradivo i način polaganja Gradivo: osnove jezika

Више

RAČUNARSKI SISTEM Ne postoji jedinstvena definicija pojma računarski sistem. Računarski sistem predstavlja skup mašina i pridruženih metoda (realizova

RAČUNARSKI SISTEM Ne postoji jedinstvena definicija pojma računarski sistem. Računarski sistem predstavlja skup mašina i pridruženih metoda (realizova RAČUNARSKI SISTEM Ne postoji jedinstvena definicija pojma računarski sistem. Računarski sistem predstavlja skup mašina i pridruženih metoda (realizovanih u obliku softvera) organizovanih radi vršenja automatske

Више

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka) . B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji

Више

1

1 Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N

Више

Pripreme 2016 Indukcija Grgur Valentić lipanj Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO

Pripreme 2016 Indukcija Grgur Valentić lipanj Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO Pripreme 016 Indukcija Grgur Valentić lipanj 016. Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO kandidate. Zato su zadaci podjeljeni u odlomka. U uvodu

Више

PowerPoint-Präsentation

PowerPoint-Präsentation TRAJANJE AKCIJE 05.06.2019-31.07.2019 ILI PRETHODNOG ISTEKA ZALIHA ZELENI ALAT Akcija sa poklonima pki, BOSCH, EMEA, A, L, Aljosa.Gnjatovic Digitally signed by pki, BOSCH, EMEA, A, L, Aljosa.Gnjatovic

Више

Programski jezik C

Programski jezik C Pojam funkcije Deklaracija i definicija funcije Poziv funkcije Memorijske klase promjenljivih Primjeri. Za kompajliranje koda koristen DEV-C++ 4.9.9.2 Compiler!!!! Moze is koristiti I bilo koji drugi standardni

Више

Dinamičko programiranje Primer 1: Za dati niz naći njegov najduži neopadajući podniz. Defnicija: podniz nekog niza je niz koji se dobija izbacivanjem

Dinamičko programiranje Primer 1: Za dati niz naći njegov najduži neopadajući podniz. Defnicija: podniz nekog niza je niz koji se dobija izbacivanjem Dinamičko programiranje Primer 1: Za dati niz naći njegov najduži neopadajući podniz. Defnicija: podniz nekog niza je niz koji se dobija izbacivanjem nekih (moguće nijednog) elemenata polaznog niza. Formalno,

Више

ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2.

ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2. ZADACI ZA VJEŽBU. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C).. Pomoću matematičke indukcije dokažite da za svaki n N vrijedi:

Више

Neprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14

Neprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14 Neprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14 Jelena Sedlar (FGAG) Neprekidnost 2 / 14 Definicija. Jelena Sedlar (FGAG) Neprekidnost

Више

PowerPoint Presentation

PowerPoint Presentation Java konkurentno programiranje Životni ciklus niti i problemi sinhronizacije resursa Multitasking Multithreading Životni ciklus niti http://www.roseindia.net/java/thread/lifecycle-of-threads.shtml Životni

Више

Znanstveno računanje 2 3. i 4. predavanje Saša Singer web.math.hr/~singer PMF Matematički odjel, Zagreb ZR2 2009, 3. i 4. predavanje p.

Znanstveno računanje 2 3. i 4. predavanje Saša Singer web.math.hr/~singer PMF Matematički odjel, Zagreb ZR2 2009, 3. i 4. predavanje p. Znanstveno računanje 2 3. i 4. predavanje Saša Singer singer@math.hr web.math.hr/~singer PMF Matematički odjel, Zagreb ZR2 2009, 3. i 4. predavanje p.1/61 Sadržaj predavanja Primjer iz prakse (nastavak):

Више

_sheets.dvi

_sheets.dvi Zavod za elektroniku, mikroelektroniku, 28. studenog 2008. računalne i inteligentne sustave 2. me duispit iz Arhitekture računala 2, teorijski dio 1. Koja komponenta modernih računala nije bila prisutnau

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte

Више

8. razred kriteriji pravi

8. razred kriteriji pravi KRITERIJI OCJENJIVANJA MATEMATIKA 8. RAZRED Učenik će iz nastavnog predmeta matematike biti ocjenjivan usmeno i pismeno. Pismeno ocjenjivanje: U osmom razredu piše se šest ispita znanja i bodovni prag

Више

Microsoft PowerPoint - Programski_Jezik_C_Organizacija_Izvornog_Programa_I_Greske [Compatibility Mode]

Microsoft PowerPoint - Programski_Jezik_C_Organizacija_Izvornog_Programa_I_Greske [Compatibility Mode] Programski jezik C organizacija izvornog programa Prevođenje Pisanje programa izvorni program Prevođenje programa izvršni program Izvršavanje programa rezultat Faze prevođenja Pretprocesiranje Kompilacija

Више

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi 3. siječnja 0. od 3:00 do 4:00 RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovitelji Sadržaj Zadaci. 4.... Zadaci 5. 0.... 3 od 8 Zadaci. 4. U sljedećim pitanjima na pitanja odgovaraš upisivanjem

Више

СТЕПЕН појам и особине

СТЕПЕН појам и особине СТЕПЕН појам и особине Степен чији је изложилац природан број N R \ 0 изложилац (експонент) основа степен Особине: m m m m : m m : : Примери. 8 4 7 4 5 4 4 5 6 :5 Важно! 5 5 5 5 5 55 5 Основа је број -5

Више

CARNET Helpdesk - Podrška obrazovnom sustavu e-dnevnik upute za nadzor razrednih knjiga tel: fax: mail:

CARNET Helpdesk - Podrška obrazovnom sustavu e-dnevnik upute za nadzor razrednih knjiga tel: fax: mail: Sadržaj... 1 1. Predgovor... 2 2. Prijava u sustav... 2 3. Postavke... 3 4. Kreiranje zahtjeva za nadzorom razrednih knjiga... 4 5. Pregled razredne knjige... 6 5.1 Dnevnik rada... 7 5.2 Imenik... 11 5.3

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

PowerPoint Presentation

PowerPoint Presentation Podaci za Data Mining Glava _. Sadržaj Skupovi podataka Atributi i tipovi atributa Tipovi skupova podataka Kvalitet podataka Mjerenje sličnosti u skupu podataka Analiza na osnovu veza u podacima 10 Skupovi

Више

Slide 1

Slide 1 OSNOVNI POJMOVI Naredba je uputa računalu za obavljanje određene radnje. Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Pisanje programa zovemo programiranje. Programski jezik

Више

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 vostruki integrali Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod vostruki integral je integral funkcije dvije varijable. Oznaka: f

Више

Microsoft Word - KVADRATNA FUNKCIJA.doc

Microsoft Word - KVADRATNA FUNKCIJA.doc KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b+ c Gde je R, a i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b+ c je parabola. Najpre ćemo naučiti kako izgleda

Више

АГЕНЦИЈА ЗА БАНКАРСТВО РЕПУБЛИКЕ СРПСКЕ УПУТСТВО ЗА ЕЛЕКТРОНСКО ДОСТАВЉАЊЕ ПОДАТАКА ИЗ ОБЛАСТИ РЕСТРУКТУРИРАЊА БАНАКА Бања Лука, јули године

АГЕНЦИЈА ЗА БАНКАРСТВО РЕПУБЛИКЕ СРПСКЕ УПУТСТВО ЗА ЕЛЕКТРОНСКО ДОСТАВЉАЊЕ ПОДАТАКА ИЗ ОБЛАСТИ РЕСТРУКТУРИРАЊА БАНАКА Бања Лука, јули године АГЕНЦИЈА ЗА БАНКАРСТВО РЕПУБЛИКЕ СРПСКЕ УПУТСТВО ЗА ЕЛЕКТРОНСКО ДОСТАВЉАЊЕ ПОДАТАКА ИЗ ОБЛАСТИ РЕСТРУКТУРИРАЊА БАНАКА Бања Лука, јули 2019. године Садржај 1. НАЧИН ДОСТАВЉАЊА ИЗВЈЕШТАЈНИХ ДАТОТЕКА... 1

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) . D. Zadatak najbrže možemo riješiti tako da odredimo decimalne zapise svih šest racionalnih brojeva (zaokružene na dvije decimale ako je decimalan zapis beskonačan periodičan decimalan broj). Dobivamo:

Више

ПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн

ПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн ПРИРОДА И ЗНАК РЕШЕЊА ax x c 0 x x D 4ac a ( сви задаци су решени) c D xx x/ a a УСЛОВИ Решења реална и различита D>0 Решења реална D Двоструко решење (реална и једнака решења) D=0 Комплексна решења (нису

Више

Programiranje 1 1. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2015, 1. predavanje p.1/49

Programiranje 1 1. predavanje Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2015, 1. predavanje p.1/49 Programiranje 1 1. predavanje Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2015, 1. predavanje p.1/49 Dobar dan, dobro došli Prog1 2015, 1. predavanje p.2/49

Више