MOLEKULARNa BIOLOGIJa i biotehnologija

Слични документи
Транскрипт:

MOLEKULARNa BIOLOGIJa i biotehnologija 2020/2021 izv. prof. dr. sc. Ivana Ivančić Baće ivana.ivancic.bace@biol.pmf.hr tel. 4606-273

Plan nastave: Kolegij se sastoji iz: predavanja i seminara (predavanja) Pohađanje kolegija je obavezno Nastava će biti kondenzirana 2 sata predavanja + seminari iza proljetnog ispitnog roka (vjerojatno stalno online ovisno o epidemiološkoj situaciji) Nakon predavanja piše se završni kolokvij Ako je kolokvij >90% uz redovito pohađanje i izrađen seminar - nema ispita

Ukupna ocjena na ispitu sastoji se od: 1. Pismenog ispita ili kolokvija (60% ocjene) 2. Seminara (10% ocjene) 3. Redovnog pohađanja nastave (10% ocjene) 4. Usmenog ispita (20%) Kolokvij 50-60% - 1 61-70% - 2 71-80% - 3 81-90% - 4 91-100% - 5

Nešto o seminarima Na zadanu temu treba napraviti Power point prezentaciju u trajanju do 20tak minuta Temu možete izabrati sami ili u dogovoru s nastavnikom (znanstveni rad ili poglavlje iz udžbenika, nešto što ste čuli na vijestima pa želite proširiti)

Predavanja: 1. Protok genetičke informacije, genetički kod i dizajn proteina, 2 i 3. Stanica kao model u istraživanjima, matične stanice, tkivno inženjerstvo 4 i 5. Osnovne metode molekularne biologije: PCR, RT-PCR, sekvenciranje 6 i 7. Osnovne metode molekularne biologije: kloniranje, uređivanje genoma, genska terapija mikročipovi, detekcija proteina (western-blot) 8 i 9. GMO organizmi (transgenične biljke i životinje) prednosti i rizici 10 i 11. Biotehnologija od početnog supstrata do proizvoda primjeri fermentacije, zelene tehnologije, proizvodnja biološki važnih molekula, proizvodnja cjepiva

Literatura: Nelson, Cox & Lehninger - Principles of Biochemistry: 3rd ed. 2000, 7th ed. 2017 Cooper & Hausman - Stanica molekularni pristup, peto izdanje, 2010, Medicinaska naklada Lodish et al. - Molecular Cell Biology:, 6th ed. 2008, 8th ed. 2016, W.H. Freeman R. D. Schmidt & C. Schmidt-Dannert Biotechnology, Wiley VCH 2016, Germany

Nukleinske kiseline Informacijske molekule - sadrže genetičku uputu o građi organizma i djelovanju svih gena 2 tipa nukleinskih kiselina: DNA (deoksiribonukleinska kiselina) pohrana svih podataka RNA (ribonukleinska kiselina) dolazi u nekoliko oblika (mrna, trna, rrna) Molekule polimeri sastoje se iz monomernih jedinica - NUKLEOTIDA

Nukleinske kiseline su linearni polimeri (polinukleotidi) Kraći polimeri se nazivaju oligonukleotidi (10-40 pb)

1) Struktura molekule DNA

Struktura nukleotida 1) Šećer (pentoza 5 ugljikovih atoma) riboza 2-deoksiriboza

2) Dušična baza Može biti metiliran CH 3 Struktura nukleotida Deaminacijom citozina nastaje uracil! RNA Demetilacijom timina nastaje uracil! C U T H pirimidin G A purin

Šećer i dušična baza povezani su glikozidnom vezom

1) Deoksiriboza 2) Dušična baza 3) Fosfat Struktura nukleotida Deoksinukleozid Nosi negativan električni naboj! HO Deoksiadenozin (deoksinukleozid) Deoksinukleotid Deoksiadenozin + Fosfat = Deoksiadenozin-5 -monofosfat Deoksiadenozin + 2 Fosfata = Deoksiadenozin-5 -difosfat Deoksiadenozin + 3 Fosfata = Deoksiadenozin-5 -trifosfat

na 5 kraju nedostaje nukleotid na 5 poziciji (ima 5 fosfat) na 3 kraju nedostaje nukleotid na 3 poziciji (ima slobodnu 3 OH)

Kako su međusobno povezana dva lanca DNA? VODIKOVIM VEZAMA A G T C Vodikove veze uspostavljaju se između komplementarnih baza

Antiparalelni lanci Antiparalelni lanci se okreću jedan oko drugog tvoreći DVOSTRUKI HELIKS

DNA lanci Antiparalelni lanci DNA nisu identični, već su komplementarni To znači da su lanci tako smješteni da su komplementarne baze međusobno sparene Zato je moguće predvidjeti slijed nukleotida (sekvenca ili PRIMARNA STRUKTURA) jednog lanca znajući sekvencu njegovog komplementa (*dati primjere za vježbu)

DNA i gen Dogovorom se sekvenca piše od 5 prema 3 kraju GEN: dio sekvence DNA koja nosi informaciju u obliku slijeda baza o građi proteina Prijenos ove informacije ide preko prepisivanja (transkripcije) u RNA koja se zatim prevodi (translatira) u protein

Struktura RNA RNA sadrži šećer ribozu i bazu uracil Obično je jednolančana, najvažnije su 3 RNA: mrna, rrna i trna

Lanci RNA se mogu preklopiti i stvarati lokalne dvolančane regije, po konformaciji slične A obliku DNA Sekundarne strukture Desna, jednolančana uzvojnica RNA ukosnica ispupčenje petlja

Kako se gen eksprimira?

Uloge proteina Strukturna uloga Pohrana amino kiselina Prijenos ostalih supstanci Koordinacija aktivnosti u stanici Odgovor na kemijski podražaj Kretanje Zaštita od bolesti Selektivno ubrzavanje kemijskih reakcija

mrna sadrži prijepis upute za redoslijed aminokiselina u proteinu Kodon = 3 mrna baze = 1 amino kiselina Prvi kodon u sekvenci definira OKVIR ČITANJA

Karakteristike genetičkog koda Linearan Riječ u mrna se sastoji od 3 slova (kodon ili triplet) Kod je nedvosmislen = svaki triplet određuje samo jednu aminokiselinu Kod je degeneriran (jednu aminokiselinu može određivati više kodona) više različitih trna! Kod ima start i stop signale Kod je bez pauza - kodoni se čitaju jedan za drugim

Okviri čitanja 64 kodona 20 aminokiselina 40tak trna kod E. coli 61 kodon kodira za aminokiseline 3 okvira čitanja za jednu sekvencu DNA

Kod je degeneriran - više kodona za jednu aminokiselinu! GOSPODINE, OTKRILI SU GENETIČKI KOD! PROKLETI HAKERI! MORAM PROMIJENITI ŠIFRU Zadnja baza kodona može biti različita KOLEBLJIVA baza

Karakteristike genetičkog koda Kod je nepreklapajući - jednom kad započne translacija, svaki ribonukleotid unutar mrna predstavlja dio samo jednog tripleta Kod je gotovo univerzalan s malim razlikama kod je isti za viruse, bakterije, arheje i eukariote Međutim, različite vrste koriste različite kodone (pripadne trna) to je važno kad se želi dobiti optimalna količina rekombinantnog proteina Neke trna su zastupljenije od drugih pa se optimiziranjem kodona poboljšava translacija i povećava prinos proteina https://www.youtube.com/watch?v=lqhno n3pk-w

Dizajniranje proteina Modificiranje proteina - mijenjanje proteinske sekvence genetičkim metodama s ciljem dobivanja boljih verzija istog proteina stabilnijeg na višim temperaturama, visokim ph, boljom topivošću Mora biti poznat gen za određeni protein i poznata struktura proteina (rendgenska kristalografija) Dva su pristupa: ciljana mutageneza i usmjerena evolucija

Ciljana mutageneza Metoda je na razini DNA Suština metode je: Klonirati gen od interesa u plazmid In vitro mutageneza kloniranog gena korištenjem oligonukleotida koji sadrže željenu mutaciju Uklanjanje nemutiranog plazmida Potvrda mutacije sekvenciranjem Ova metoda će biti jasnija kad prođemo kloniranje gena i sekvenciranje

Usmjerena evolucija Za ovu metodu je dodijeljena Nobelova nagrada za kemiju za 2018. Klonirani gen staviti u bakteriju i pustiti da prirodno evoluira nakuplja mutacije pročistiti proteine i selektirati one koji su najbolji za određeni zadatak ponoviti selekciju u više ciklusa Frances Arnold George P. Smith Gregory P. Winter https://www.sciencenewsforstudents.org/article/three-take-home-chemistry-nobel-harnessing-protein-evolution

Moderniji pristup- računalni dizajn proteina Dizajnirati nove proteine na temelju znanja strukture poznatih proteina pretraživanjem odnosa sekvence structure Podaci se uzimaju iz Protein Data Bank (PDB) Metoda ima ograničenja zbog netočnosti prilikom modeliranja, ali metoda će se vremenom usavršavati TERM = tertiary motifs Jianfu Zhou et al. PNAS 2020;117:2:1059-1068